# HG changeset patch # User cdf # Date 1332715983 0 # Node ID 03c9c820682e2c76bc4d666c039d429112b4b96a # Parent e567b7ac3d1fb4f1c98f1d722cf191e0e4e443bf new version of secs1d diff -r e567b7ac3d1f -r 03c9c820682e extra/secs1d/doc/manual.pdf Binary file extra/secs1d/doc/manual.pdf has changed diff -r e567b7ac3d1f -r 03c9c820682e extra/secs1d/doc/manual.tex --- a/extra/secs1d/doc/manual.tex Sun Mar 25 22:44:30 2012 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,266 +0,0 @@ -\documentclass[10pt]{article} -\usepackage{geometry} -\geometry{a4paper} -\hoffset=-1cm -\usepackage{graphicx} -\usepackage{amssymb} -\usepackage{epstopdf} -\usepackage{cprotect} -\usepackage{float} -\floatstyle{plain} -\newfloat{demo}{thp}{dem} -\floatname{demo}{Demo} -\newfloat{demoout}{thp}{deo} -\floatname{demoout}{Demo Output} -\newcommand{\unit}[1]{\mathrm{#1}} -\newcommand{\electronvolt}{\unit{eV}} -\newcommand{\kelvin}{\unit{K}} -\newcommand{\nano}{\unit{n}} -\newcommand{\meter}{\unit{m}} -\newcommand{\second}{\unit{s}} -\newcommand{\volt}{\unit{V}} -\newcommand{\Ampere}{\unit{A}} - - -\title{secs1d} -\author{Carlo de Falco \and Riccardo Sacco} -\begin{document} -\maketitle -\tableofcontents - -\begin{table} -\caption{secs1d Package Description} -\centering -\begin{tabular}{|l|l|} -\hline -{\bf Name: } & secs1d\\ \hline -{\bf Description: } & -A Drift-Diffusion simulator for 1d semiconductor devices\\ \hline -{\bf Version: } & 0.0.9\\ \hline -{\bf Release Date: } & 2012-03-25\\ \hline -{\bf Author: } & Carlo de Falco\\ \hline -{\bf Maintainer: } & Carlo de Falco\\ \hline -{\bf License: } & GPL version 2 or later\\ \hline -{\bf Depends on: } & -octave ($>=$ 3.0.0), bim ($>=$ 0.0.0), \\ \hline -{\bf Autoload: } &No\\ \hline -\end{tabular} -\end{table} - -\part{Mathematical models} - -\section{Full model} -\subsection{Conservation laws} - -\begin{equation}\label{eq:conservation} -\left\{ -\begin{array}{ll} --\lambda^{2}\mathrm{div}\ \left(\varepsilon_{r} \mathrm{grad}\ -\varphi \right) = p - n + N_{D} - N_{A} \\[5mm] --\mathrm{div}\ \left(J_{n} \right) + R_{n} \, n = G_{n} \\[5mm] -\phantom{-}\mathrm{div}\ \left(J_{p} \right) + R_{p} \, p = G_{p} -\end{array} -\right. -\end{equation} - -\section{Constitutive relations} - -\subsection{Currents} - -\begin{equation}\label{eq:currents} -\left\{ -\begin{array}{ll} -J_{n} = \phantom{-}\mu_{n} \left( \mathrm{grad}\ n - n\ \mathrm{grad}\ \varphi\right) -\\[5mm] -J_{p} = -\mu_{p} \left( \mathrm{grad}\ p + p\ \mathrm{grad}\ \varphi\right) -\end{array} -\right. -\end{equation} - -\subsection{Mobilities} - -\begin{equation}\label{eq:mobilities} -\left\{ -\begin{array}{ll} -\mu_{n} = \displaystyle \frac{2\bar{\mu}_{n}} -{1 + \sqrt{1 + 4 \left( \displaystyle \frac{\bar{\mu}_{n}|E|}{v_{sat,n}}\right)^{2}}} -; \qquad -\bar{\mu}_{n} = \mu_{min, n} + -\displaystyle \frac{\mu_{0,n} - \mu_{min,n}} -{1 +\displaystyle \left(\frac{N_{D}+N_{A}}{N_{ref,n}}\right)^{\beta_{n}}} -\\[10mm] -\mu_{p} = \displaystyle \frac{2\bar{\mu}_{p}} -{1 + \sqrt{1 + 4 \left( \displaystyle \frac{\bar{\mu}_{p}|E|}{v_{sat,p}}\right)^{2}}} -; \qquad -\bar{\mu}_{p} = \mu_{min, p} + -\displaystyle \frac{\mu_{0,p} - \mu_{min,p}} -{1 +\displaystyle \left(\frac{N_{D}+N_{A}}{N_{ref,p}}\right)^{\beta_{p}}} -\end{array} -\right. -\end{equation} - -\subsection{Production terms} - -\begin{equation}\label{eq:recombination} -\left\{ -\begin{array}{ll} -R_{n} = \displaystyle -\frac{p}{\tau_{n} (p + \theta) + \tau_{p} (n + \theta)} -+ p \left(C_{n} n + C_{p} p \right) -\\[5mm] -R_{p} = \displaystyle -\frac{n}{\tau_{n} (p + \theta) + \tau_{p} (n + \theta)} -+ n \left (C_{n} n + C_{p} p \right) -\end{array} -\right. -\end{equation} - -\begin{equation}\label{eq:generation} -G_{n} = G_{p} = -\displaystyle -\frac{\theta^{2}}{\tau_{n} (p + \theta) + \tau_{p} (n + \theta)} -+ \theta^{2} \left(C_{n} n + C_{p} p \right) -+ \left(\alpha_{n} |J_{n}|+ \alpha_{p} |J_{p}| \right) -\end{equation} - -%\subsection{Ionization coefficients} - -\begin{equation}\label{eq:ioniz_coeff} -\left\{ -\begin{array}{ll} -\alpha_{n} = \displaystyle -\alpha_{n}^{\infty} \exp \left( -\frac{E_{crit,n}}{|E|} \right) -\\[5mm] -\alpha_{p} = \displaystyle -\alpha_{p}^{\infty} \exp \left( -\frac{E_{crit,p}}{|E|} \right) -\end{array} -\right. -\end{equation} - -\newpage - -\section{Simplified model used for Newton's method} -\subsection{Conservation laws} - -\begin{equation}\label{eq:conservationN} -\left\{ -\begin{array}{ll} --\lambda^{2}\mathrm{div}\ \left(\varepsilon_{r} -\mathrm{grad}\ \varphi \right) = p - n + N_{D} - N_{A} \\[5mm] --\mathrm{div}\ \left(J_{n} \right) + R_{n} \, n = G_{n} \\[5mm] -\phantom{-}\mathrm{div}\ \left(J_{p} \right) + R_{p} \, p = G_{p} -\end{array} -\right. -\end{equation} - -\section{Constitutive relations} - -\subsection{Currents} - -\begin{equation}\label{eq:currentsN} -\left\{ -\begin{array}{ll} -J_{n} = \phantom{-}\mu_{n} \left( \mathrm{grad}\ n - n\ \mathrm{grad}\ \varphi\right) -\\[5mm] -J_{p} = -\mu_{p} \left( \mathrm{grad}\ p + p\ \mathrm{grad}\ \varphi\right) -\end{array} -\right. -\end{equation} - -\subsection{Production terms} - -\begin{equation}\label{eq:recombinationN} -\left\{ -\begin{array}{ll} -R_{n} = \displaystyle \frac{p}{\tau_{n} (p + \theta) + \tau_{p} (n + \theta)} -+ p \left(C_{n} n + C_{p} p \right) -\\[5mm] -R_{p} = \displaystyle \frac{n}{\tau_{n} (p + \theta) + \tau_{p} (n + \theta)} -+ n \left (C_{n} n + C_{p} p \right) -\end{array} -\right. -\end{equation} - -\begin{equation}\label{eq:generationN} -G_{n} = G_{p} = -\displaystyle \frac{\theta^{2}}{\tau_{n} (p + \theta) + \tau_{p} (n + \theta)} -+ \theta^{2} \left(C_{n} n + C_{p} p \right) -\end{equation} - -\newpage - -\section{Scaling factors/adimensional parameters} - -Given any generic quantity $u$ having units $U$, we -define the {\em scaled} quantity $\widehat{u}$ as -$$ -\widehat{u} : = \displaystyle \frac{u}{\overline{u}} -$$ -where $\overline{u}$ is the scaling factor associated with $u$ -and having the same units as $u$. - -\begin{table}[h!] -\begin{center} -\begin{tabular}{lll}\hline -\textbf{Scaling factor} & \textbf{Value} & \textbf{Units}\\ \hline -$\overline{x}$ & $L$ & $\meter$ \\[1mm] -$\overline{n}$ & $\| N_D^+ - N_A^-\|_{L^{\infty}(0,L)}$ -& $\meter^{-3}$ \\[1mm] -$\overline{\varphi}$ & $K_B T / q \simeq 26 \cdot 10^{-3}$ -& $\volt$ \\[1mm] -$\overline{\mu}$ & $\max\left\{ \mu_{0,n}, \, \mu_{0,p}\right\}$ -& $\meter^2\,\volt^{-1}\,\second^{-1}$ \\[1mm] -$\overline{t}$ & $\overline{x}^2/(\overline{\mu} \, \overline{\varphi})$ -& $\second$ \\[1mm] -$\overline{R}$ & $\overline{n}/\overline{t}$ -& $\meter^{-3} \second^{-1}$ \\[1mm] -$\overline{E}$ & $\overline{\varphi}/\overline{x}$ -& $\volt \meter^{-1}$ \\[1mm] -$\overline{J}$ & $q \, \overline{\mu} \, \overline{n} \, -\overline{E}$ & $\Ampere \meter^{-2}$ \\[1mm] -$\overline{\alpha}$ & $\overline{x}^{-1}$ & $\meter^{-1}$ \\[1mm] -$\overline{C}_{Au}$ & $\overline{R}/\overline{n}^3$ & -$\meter^{6} \second^{-1}$ \\[1mm] -\hline -\end{tabular} -\caption{Scaling factors for the Drift-Diffusion model equations.} -\label{tab:model_param_1d} -\end{center} -\end{table} - -We also introduce the following adimensional numbers -$$ -\lambda^2:= \displaystyle \frac{\varepsilon_0 \overline{\varphi}} -{q \, \overline{n} \, \overline{x}^2}, \qquad -\theta:= \displaystyle \frac{n_i}{\overline{n}} -$$ -having the meaning of squared normalized Debye length and -normalized intrinsic concentration, respectively. - -\part{Function reference} - -\section{Drift-Diffusion solvers} - -\subsection{secs1d\_dd\_gummel\_map} -\input{function/secs1d_dd_gummel_map.tex} - -\subsection{secs1d\_dd\_newton} -\input{function/secs1d_dd_newton.tex} - -\section{Non-linear Poisson solver} -\subsection{secs1d\_nlpoisson\_newton} -\input{function/secs1d_nlpoisson_newton.tex} - -\section{Physical constants and material properties} -\subsection{secs1d\_physical\_constants.m} -\input{function/secs1d_physical_constants.m.tex} - -\subsection{secs1d\_silicon\_material\_properties.m} -\input{function/secs1d_silicon_material_properties.m.tex} - -\appendix -\section{Licence} -\input{COPYING.tex} - - -\end{document} \ No newline at end of file diff -r e567b7ac3d1f -r 03c9c820682e extra/secs1d/doc/secs1d_manual.pdf Binary file extra/secs1d/doc/secs1d_manual.pdf has changed diff -r e567b7ac3d1f -r 03c9c820682e extra/secs1d/doc/secs1d_manual.tex --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/extra/secs1d/doc/secs1d_manual.tex Sun Mar 25 22:53:03 2012 +0000 @@ -0,0 +1,267 @@ +\documentclass[9pt]{amsart} +\usepackage{geometry} +\geometry{a4paper} +\usepackage{graphicx} +\usepackage{amssymb} +\usepackage{epstopdf} +\usepackage{cprotect} +\usepackage{float} +\floatstyle{plain} +\newfloat{demo}{thp}{dem} +\floatname{demo}{Demo} +\newfloat{demoout}{thp}{deo} +\floatname{demoout}{Demo Output} +\newcommand{\unit}[1]{\mathrm{#1}} +\newcommand{\electronvolt}{\unit{eV}} +\newcommand{\kelvin}{\unit{K}} +\newcommand{\nano}{\unit{n}} +\newcommand{\meter}{\unit{m}} +\newcommand{\second}{\unit{s}} +\newcommand{\volt}{\unit{V}} +\newcommand{\Ampere}{\unit{A}} + + +\title{secs1d} +\author{Carlo de Falco \and Riccardo Sacco} +\begin{document} +\maketitle +\titlepage +\tableofcontents + +\begin{table} +\caption{secs1d Package Description} +\centering +\begin{tabular}{|l|l|} +\hline +{\bf Name: } & secs1d\\ \hline +{\bf Description: } & +A Drift-Diffusion simulator for 1d semiconductor devices\\ \hline +{\bf Version: } & 0.0.9\\ \hline +{\bf Release Date: } & 2012-03-25\\ \hline +{\bf Author: } & Carlo de Falco\\ \hline +{\bf Maintainer: } & Carlo de Falco\\ \hline +{\bf License: } & GPL version 2 or later\\ \hline +{\bf Depends on: } & +octave ($>=$ 3.0.0), bim ($>=$ 0.0.0), \\ \hline +{\bf Autoload: } &No\\ \hline +\end{tabular} +\end{table} +\clearpage + +\part{Mathematical models} + +\section{Full model} +\subsection{Conservation laws} + +\begin{equation}\label{eq:conservation} +\left\{ +\begin{array}{ll} +-\lambda^{2}\mathrm{div}\ \left(\varepsilon_{r} \mathrm{grad}\ +\varphi \right) = p - n + N_{D} - N_{A} \\[5mm] +-\mathrm{div}\ \left(J_{n} \right) + R_{n} \, n = G_{n} \\[5mm] +\phantom{-}\mathrm{div}\ \left(J_{p} \right) + R_{p} \, p = G_{p} +\end{array} +\right. +\end{equation} + +\section{Constitutive relations} + +\subsection{Currents} + +\begin{equation}\label{eq:currents} +\left\{ +\begin{array}{ll} +J_{n} = \phantom{-}\mu_{n} \left( \mathrm{grad}\ n - n\ \mathrm{grad}\ \varphi\right) +\\[5mm] +J_{p} = -\mu_{p} \left( \mathrm{grad}\ p + p\ \mathrm{grad}\ \varphi\right) +\end{array} +\right. +\end{equation} + +\subsection{Mobilities} + +\begin{equation}\label{eq:mobilities} +\left\{ +\begin{array}{ll} +\mu_{n} = \displaystyle \frac{2\bar{\mu}_{n}} +{1 + \sqrt{1 + 4 \left( \displaystyle \frac{\bar{\mu}_{n}|E|}{v_{sat,n}}\right)^{2}}} +; \qquad +\bar{\mu}_{n} = \mu_{min, n} + +\displaystyle \frac{\mu_{0,n} - \mu_{min,n}} +{1 +\displaystyle \left(\frac{N_{D}+N_{A}}{N_{ref,n}}\right)^{\beta_{n}}} +\\[10mm] +\mu_{p} = \displaystyle \frac{2\bar{\mu}_{p}} +{1 + \sqrt{1 + 4 \left( \displaystyle \frac{\bar{\mu}_{p}|E|}{v_{sat,p}}\right)^{2}}} +; \qquad +\bar{\mu}_{p} = \mu_{min, p} + +\displaystyle \frac{\mu_{0,p} - \mu_{min,p}} +{1 +\displaystyle \left(\frac{N_{D}+N_{A}}{N_{ref,p}}\right)^{\beta_{p}}} +\end{array} +\right. +\end{equation} + +\subsection{Production terms} + +\begin{equation}\label{eq:recombination} +\left\{ +\begin{array}{ll} +R_{n} = \displaystyle +\frac{p}{\tau_{n} (p + \theta) + \tau_{p} (n + \theta)} ++ p \left(C_{n} n + C_{p} p \right) +\\[5mm] +R_{p} = \displaystyle +\frac{n}{\tau_{n} (p + \theta) + \tau_{p} (n + \theta)} ++ n \left (C_{n} n + C_{p} p \right) +\end{array} +\right. +\end{equation} + +\begin{equation}\label{eq:generation} +G_{n} = G_{p} = +\displaystyle +\frac{\theta^{2}}{\tau_{n} (p + \theta) + \tau_{p} (n + \theta)} ++ \theta^{2} \left(C_{n} n + C_{p} p \right) ++ \left(\alpha_{n} |J_{n}|+ \alpha_{p} |J_{p}| \right) +\end{equation} + +%\subsection{Ionization coefficients} + +\begin{equation}\label{eq:ioniz_coeff} +\left\{ +\begin{array}{ll} +\alpha_{n} = \displaystyle +\alpha_{n}^{\infty} \exp \left( -\frac{E_{crit,n}}{|E|} \right) +\\[5mm] +\alpha_{p} = \displaystyle +\alpha_{p}^{\infty} \exp \left( -\frac{E_{crit,p}}{|E|} \right) +\end{array} +\right. +\end{equation} + +\newpage + +\section{Simplified model used for Newton's method} +\subsection{Conservation laws} + +\begin{equation}\label{eq:conservationN} +\left\{ +\begin{array}{ll} +-\lambda^{2}\mathrm{div}\ \left(\varepsilon_{r} +\mathrm{grad}\ \varphi \right) = p - n + N_{D} - N_{A} \\[5mm] +-\mathrm{div}\ \left(J_{n} \right) + R_{n} \, n = G_{n} \\[5mm] +\phantom{-}\mathrm{div}\ \left(J_{p} \right) + R_{p} \, p = G_{p} +\end{array} +\right. +\end{equation} + +\section{Constitutive relations} + +\subsection{Currents} + +\begin{equation}\label{eq:currentsN} +\left\{ +\begin{array}{ll} +J_{n} = \phantom{-}\mu_{n} \left( \mathrm{grad}\ n - n\ \mathrm{grad}\ \varphi\right) +\\[5mm] +J_{p} = -\mu_{p} \left( \mathrm{grad}\ p + p\ \mathrm{grad}\ \varphi\right) +\end{array} +\right. +\end{equation} + +\subsection{Production terms} + +\begin{equation}\label{eq:recombinationN} +\left\{ +\begin{array}{ll} +R_{n} = \displaystyle \frac{p}{\tau_{n} (p + \theta) + \tau_{p} (n + \theta)} ++ p \left(C_{n} n + C_{p} p \right) +\\[5mm] +R_{p} = \displaystyle \frac{n}{\tau_{n} (p + \theta) + \tau_{p} (n + \theta)} ++ n \left (C_{n} n + C_{p} p \right) +\end{array} +\right. +\end{equation} + +\begin{equation}\label{eq:generationN} +G_{n} = G_{p} = +\displaystyle \frac{\theta^{2}}{\tau_{n} (p + \theta) + \tau_{p} (n + \theta)} ++ \theta^{2} \left(C_{n} n + C_{p} p \right) +\end{equation} + +\newpage + +\section{Scaling factors/adimensional parameters} + +Given any generic quantity $u$ having units $U$, we +define the {\em scaled} quantity $\widehat{u}$ as +$$ +\widehat{u} : = \displaystyle \frac{u}{\overline{u}} +$$ +where $\overline{u}$ is the scaling factor associated with $u$ +and having the same units as $u$. + +\begin{table}[h!] +\begin{center} +\begin{tabular}{lll}\hline +\textbf{Scaling factor} & \textbf{Value} & \textbf{Units}\\ \hline +$\overline{x}$ & $L$ & $\meter$ \\[1mm] +$\overline{n}$ & $\| N_D^+ - N_A^-\|_{L^{\infty}(0,L)}$ +& $\meter^{-3}$ \\[1mm] +$\overline{\varphi}$ & $K_B T / q \simeq 26 \cdot 10^{-3}$ +& $\volt$ \\[1mm] +$\overline{\mu}$ & $\max\left\{ \mu_{0,n}, \, \mu_{0,p}\right\}$ +& $\meter^2\,\volt^{-1}\,\second^{-1}$ \\[1mm] +$\overline{t}$ & $\overline{x}^2/(\overline{\mu} \, \overline{\varphi})$ +& $\second$ \\[1mm] +$\overline{R}$ & $\overline{n}/\overline{t}$ +& $\meter^{-3} \second^{-1}$ \\[1mm] +$\overline{E}$ & $\overline{\varphi}/\overline{x}$ +& $\volt \meter^{-1}$ \\[1mm] +$\overline{J}$ & $q \, \overline{\mu} \, \overline{n} \, +\overline{E}$ & $\Ampere \meter^{-2}$ \\[1mm] +$\overline{\alpha}$ & $\overline{x}^{-1}$ & $\meter^{-1}$ \\[1mm] +$\overline{C}_{Au}$ & $\overline{R}/\overline{n}^3$ & +$\meter^{6} \second^{-1}$ \\[1mm] +\hline +\end{tabular} +\caption{Scaling factors for the Drift-Diffusion model equations.} +\label{tab:model_param_1d} +\end{center} +\end{table} + +We also introduce the following adimensional numbers +$$ +\lambda^2:= \displaystyle \frac{\varepsilon_0 \overline{\varphi}} +{q \, \overline{n} \, \overline{x}^2}, \qquad +\theta:= \displaystyle \frac{n_i}{\overline{n}} +$$ +having the meaning of squared normalized Debye length and +normalized intrinsic concentration, respectively. + +\part{Function reference} + +\section{Drift-Diffusion solvers} + +\subsection{secs1d\_dd\_gummel\_map} +\input{function/secs1d_dd_gummel_map.tex} + +\subsection{secs1d\_dd\_newton} +\input{function/secs1d_dd_newton.tex} + +\section{Non-linear Poisson solver} +\subsection{secs1d\_nlpoisson\_newton} +\input{function/secs1d_nlpoisson_newton.tex} + +\section{Physical constants and material properties} +\subsection{secs1d\_physical\_constants.m} +\input{function/secs1d_physical_constants.m.tex} + +\subsection{secs1d\_silicon\_material\_properties.m} +\input{function/secs1d_silicon_material_properties.m.tex} + +\appendix +\section{Licence} +\input{COPYING.tex} + + +\end{document} \ No newline at end of file