
Fem-fenics

General purpose Finite Element library

for GNU-Octave

Work in progress

(help and remarks are welcome)

Marco Vassallo

November 10, 2013

2

Contents

1 Introduction 5

2 Introduction to Fem-fenics 7

2.1 Installation . 7
2.2 General layout . 7

3 Implementation 11

3.1 General layout of a class . 11
3.2 General layout of a function . 11

3.2.1 Mesh generation and conversion 11
3.2.2 Sparse Matrices . 11
3.2.3 Shared pointer . 11
3.2.4 Polymorphism . 11
3.2.5 Code release . 11
3.2.6 Code on the �y . 11
3.2.7 Autoconf . 11

4 More Advanced Examples 15

4.1 Navier-Stokes equation with Chorin-Temam projection algorithm 15
4.2 A penalization method to take into account obstacles in incom-

pressible viscous �ows . 18

3

4 CONTENTS

Chapter 1

Introduction

Fem-Fenics is an open-source package for the resolution of partial di�erential
equations with Octave. The project has been developed during the Google Sum-
mer of Code 2013 with the help and the sustain of the GNU-Octave community
under the supervision of prof. De Falco.

The report is structured as follows:

• in chapter 2 we provide a simple reference guide for beginners

• in chapter 3 is presented a detailed explanation of the relevant parts of the
program. In this way, the interested reader can see what there is �behind�
and expecially anyone interested in it can learn quickly how it is possible
to extend the code and contribute to the project.

• in chapter 4 more examples are provided. For a lot of them, we present the
octave script alongside with the code for Fenics (in C++ and/or Python)
in order to provide the user with a quick reference guide.

If you think that going inside the report could be boring, it is available a
wiki at

http://wiki.octave.org/Fem-fenics

while if you want to see how the project has grown during the time you can give
a look at

http://gedeone-gsoc.blogspot.com/

Finally, the API is available at the following address

http://octave.sourceforge.net/fem-fenics/overview.html

5

http://wiki.octave.org/Fem-fenics
http://gedeone-gsoc.blogspot.com/
http://octave.sourceforge.net/fem-fenics/overview.html

6 CHAPTER 1. INTRODUCTION

Chapter 2

Introduction to Fem-fenics

2.1 Installation

Fem-fenics is an external package for Octave. It means that you can install it
only once that you have successfully installed Octave on your PC. Furthermore,
as Fem-fenics is based on Fenics, you also need a running version of the latter.
They can be easily installed following the guidelines provided on the o�cial
Octave [1] and Fenics [2] websites. Once that you have got Octave and Fenics,
you can just launch Octave (which now is provided with a new amazing GUI)
and type

>> pkg install fem-fenics -forge

That's all! If you encounter any problem during the installation don't hesi-
tate to contact us. To be sure that everything is working �ne, you can load the
fem-fenics pkg and run one of the examples provided within the package:

>> pkg load fem-fenics

>> femfenics_examples()

For a description of the examples, you are referred to chapter 4.

NOTE For completing the installation process successfully, the form compiler
FFC and the header �le dol�n.h should also be available on your machine. They
are managed automatically by Fenics if you install it as a binary package or with
Dorsal. If you have done it manually, please be sure that they are available be-
fore starting the installation of Fem-fenics.

2.2 General layout

A generic problem has to be solved in two steps:

1. a .u� �le where the abstract problem is described: this �le has to be writ-
ten in Uni�ed Form Language (UFL), which is a domain speci�c language
for de�ning discrete variational forms and functionals in a notation close
to pen-and-paper formulation. UFL is easy to learn, and the User manual
provides explanations and examples [3].

7

8 CHAPTER 2. INTRODUCTION TO FEM-FENICS

2. a script �le .m where the abstract problem is imported and a speci�c
problem is implemented and solved: this is the script �le where the fem-
fenics functions described in the following chapters are used.

We provide immediately a simple example in order to familiarize the user
with the code.

The Poisson equation In this example, we show how it is possible to solve
the Poisson equation with mixed Boundary Conditions. If we indicate with Ω
the domain and with Γ = ΓN∪ΓD the boundaries, the problem can be expressed
as

∆u = f on Ω

u = 0 on ΓD

∇u · n = g on ΓN

where f, g are data which represent the source for and the �ux of the scalar
variable u. A possible variational formulation of the problem is:
�nd u ∈ H1

0,ΓD
:

a(u, v) = L(v) ∀v ∈ H1
0,ΓD

a(u, v) =

∫
Ω

∇u · ∇v

L(v) =

∫
Ω

fv +

∫
ΓN

gv

The abstract problem can thus be written in the Poisson.ufl �le imme-
diately. The only thing that we have to specify at this stage is the space of
Finite Elements which we want to use for the discretization of H1

0,ΓD
. In our

case, we choose the space of continuous lagrangian polynomial of degree one
FiniteElement("Lagrange", triangle, 1), but many more possibilities are
available.

Poisson.u�
1 element = FiniteElement("Lagrange", triangle, 1)

2

3 u = TrialFunction(element)

4 v = TestFunction(element)

5

6 f = Coefficient(element)

7 g = Coefficient(element)

8

9 a = inner(grad(u), grad(v))*dx

10 L = f*v*dx + g*v*ds

It is always a good idea to check if the u� code is correctly written before
importing it into Octave:

>> ffc -l dolfin Poisson.ufl

2.2. GENERAL LAYOUT 9

Figure 2.1: The result for the Poisson equation

shouldn't produce any error. We can now implement and solve a speci�c instance
of the Poisson problem in Octave. We choose to set the parameters as follow

• Ω = [0, 1]× [0, 1]

• ΓD = (0, y) ∪ (1, y) ⊂ ∂Ω

• ΓN = (x, 0) ∪ (x, 1) ⊂ ∂Ω

• f = 10 exp
(x− 0.5)2 + (y − 0.5)2

0.02

• g = sin(5x)

A possible implementation for the Poisson problem is reported below, while
in �gure 2.1 is presented the output.

Poisson.m
1 #load the pkg and import the ufl problem

2 pkg load fem-fenics msh

3 import_ufl_Problem ('Poisson')

4

5 # Create the mesh and define function space

6 x = y = linspace (0, 1, 33);

7 mesh = Mesh(msh2m_structured_mesh (x, y, 1, 1:4));

8 V = FunctionSpace('Poisson', mesh);

9

10 # Define boundary condition and source term

11 bc = DirichletBC(V, @(x, y) 0.0, [2;4]);

12 f = Expression ('f', @(x,y) 10*exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02));

13 g = Expression ('g', @(x,y) sin (5.0 * x));

14

10 CHAPTER 2. INTRODUCTION TO FEM-FENICS

15 #Create the Bilinear and the Linear form

16 a = BilinearForm ('Poisson', V, V);

17 L = LinearForm ('Poisson', V, f, g);

18

19 #Extract the matrix and compute the solution

20 [A, b] = assemble_system (a, L, bc);

21 sol = A \ b;

22 u = Function ('u', V, sol);

23

24 # Save solution in VTK format and plot it

25 save (u, 'poisson')

26 plot (u);

Chapter 3

Implementation

Two main ideas have guided us throughout the realization of the pkg:

• keep the syntax as close as possible to the original one in Fenics

• make the interface as simple as possible.

3.1 General layout of a class

All these classes derive from octave_base_value.

3.2 General layout of a function

3.2.1 Mesh generation and conversion

3.2.2 Sparse Matrices

3.2.3 Shared pointer

3.2.4 Polymorphism

3.2.5 Code release

3.2.6 Code on the �y

3.2.7 Autoconf

In this section we want to discuss how we can write a con�g.ac and a Make�le.in
�les which:

• check if a program is available and stop if it is not

• check if a header �le is available and issue a warning if not, but go ahead
with the compilation

We want to speak about it because, even if it is not strictly related to the fem-
fenics library, I hope it could be helpful for someone else because some solutions
which could seem right at a �rst sight are de�nitely wrong.

As stated above, if we want to generate automatically a Make�le, we need
two components:

11

12 CHAPTER 3. IMPLEMENTATION

con�gure.ac Is a �le which checks whether the program/header is available
or not and sets consequently the values of some variables.

1 # Checks if the program mkoctfile is available and sets the variable

HAVE_MKOCTFILE consequently

2 AC_CHECK_PROG([HAVE_MKOCTFILE], [mkoctfile], [yes], [no])

3 # if mkoctfile is not available, it issues an error and stops the

compilation

4 if [test $HAVE_MKOCTFILE = "no"]; then

5 AC_MSG_ERROR([mkoctfile required to install $PACKAGE_NAME])

6 fi

7

8 #Checks if the header dolfin.h is available; if it is available, the

value of the ac_dolfin_cpp_flags is substituted with

-DHAVE_DOLFIN_H, otherwise it is left empty and a warning

message is printed

9 AC_CHECK_HEADER([dolfin.h],

10 [AC_SUBST(ac_dolfin_cpp_flags,-DHAVE_DOLFIN_H)

AC_SUBST(ac_dolfin_ld_flags,-ldolfin)],

11 [AC_MSG_WARN([dolfin headers could not be found, some

functionalities will be disabled, don't worry your package

will still be working, though.])]).

12

13 # It generates the Makefile, using the template described below

14 AC_CONFIG_FILES([Makefile])

Make�le.ac This �le is a template for the Make�le, which will be automati-
cally generated when the con�gure.ac �le is executed. The values of the variable
ac_dolfin_cpp_flags and ac_dolfin_ld_flags are substituted with the re-
sults obtained above:

1 CPPFLAGS += @ac_dolfin_cpp_flags@

2 LDFLAGS += @ac_dolfin_ld_flags@

In this way, if dol�n.h is available, CPPFLAGS contains also the �ag -DHAVE_DOLFIN_H.

program.cc Our .cc program, should thus include the header dol�n.h only if
-DHAVE_DOLFIN_H is de�ned at compilation time. For example

1 #ifdef HAVE_DOLFIN_H

2 #include <dolfin.h>

3 #endif

4 int main ()

5 {

6

7 #ifndef HAVE_DOLFIN_H

8 error("program: the program was built without support for

dolfin");

9 #else

10 /* Body of your function */

11 #endif

12 return 0;

3.2. GENERAL LAYOUT OF A FUNCTION 13

13 }

Warning If in the Make�le.in you write something like

1 HAVE_DOLFIN_H = @HAVE_DOLFIN_H@

2 ifdef HAVE_DOLFIN_H

3 CPPFLAGS += -DHAVE_DOLFIN_H

4 LIBS += -ldolfin

5 endif

it doesn't work because the variable HAVE_DOLFIN_H seems to be always de�ned,
even if the header is not available.

14 CHAPTER 3. IMPLEMENTATION

Chapter 4

More Advanced Examples

4.1 Navier-Stokes equation with Chorin-Temam

projection algorithm

TentativeVelocity.u�
1 # Copyright (C) 2010 Anders Logg

2 # Define function spaces (P2-P1)

3 V = VectorElement("CG", triangle, 2)

4 Q = FiniteElement("CG", triangle, 1)

5

6 # Define trial and test functions

7 u = TrialFunction(V)

8 v = TestFunction(V)

9

10 # Define coefficients

11 k = Constant(triangle)

12 u0 = Coefficient(V)

13 f = Coefficient(V)

14 nu = 0.01

15

16 # Define bilinear and linear forms

17 eq = (1/k)*inner(u - u0, v)*dx + inner(grad(u0)*u0, v)*dx + \

18 nu*inner(grad(u), grad(v))*dx - inner(f, v)*dx

19 a = lhs(eq)

20 L = rhs(eq)

PressureUpdate.u�
1 # Copyright (C) 2010 Anders Logg

2 # Define function spaces (P2-P1)

3 V = VectorElement("CG", triangle, 2)

4 Q = FiniteElement("CG", triangle, 1)

5

6 # Define trial and test functions

7 p = TrialFunction(Q)

8 q = TestFunction(Q)

9

15

16 CHAPTER 4. MORE ADVANCED EXAMPLES

10 # Define coefficients

11 k = Constant(triangle)

12 u1 = Coefficient(V)

13

14 # Define bilinear and linear forms

15 a = inner(grad(p), grad(q))*dx

16 L = -(1/k)*div(u1)*q*dx

VelocityUpdate.u�
1 # Copyright (C) 2010 Anders Logg

2 # Define function spaces (P2-P1)

3 V = VectorElement("CG", triangle, 2)

4 Q = FiniteElement("CG", triangle, 1)

5

6 # Define trial and test functions

7 u = TrialFunction(V)

8 v = TestFunction(V)

9

10 # Define coefficients

11 k = Constant(triangle)

12 u1 = Coefficient(V)

13 p1 = Coefficient(Q)

14

15 # Define bilinear and linear forms

16 a = inner(u, v)*dx

17 L = inner(u1, v)*dx - k*inner(grad(p1), v)*dx

NS.m
1 pkg load fem-fenics msh

2 import_ufl_Problem ("TentativeVelocity");

3 import_ufl_Problem ("VelocityUpdate");

4 import_ufl_Problem ("PressureUpdate");

5

6 # We can either load the mesh from the file as in Dolfin but

7 # we can also use the msh pkg to generate the L-shape domain

8 L-shape-domain;

9 mesh = Mesh (msho);

10

11 # Define function spaces (P2-P1).

12 V = FunctionSpace ('VelocityUpdate', mesh);

13 Q = FunctionSpace ('PressureUpdate', mesh);

14

15 # Set parameter values and define coefficients

16 dt = 0.01;

17 T = 3.;

18 k = Constant ('k', dt);

19 f = Constant ('f', [0; 0]);

20 u0 = Expression ('u0', @(x,y) [0; 0]);

21

22 # Define boundary conditions

23 noslip = DirichletBC (V, @(x,y) [0; 0], [3, 4]);

4.1. NAVIER-STOKES EQUATIONWITH CHORIN-TEMAMPROJECTION ALGORITHM17

24 outflow = DirichletBC (Q, @(x,y) 0, 2);

25

26 # Assemble matrices

27 a1 = BilinearForm ('TentativeVelocity', V, V, k);

28 a2 = BilinearForm ('PressureUpdate', Q, Q);

29 a3 = BilinearForm ('VelocityUpdate', V, V);

30 A1 = assemble (a1, noslip);

31 A3 = assemble (a3, noslip);

32

33 # Time-stepping

34 t = dt; i = 0;

35 while t < T

36

37 # Update pressure boundary condition

38 inflow = DirichletBC (Q, @(x,y) sin(3.0*t), 1);

39

40 # Compute tentative velocity step

41 L1 = LinearForm ('TentativeVelocity', V, k, u0, f);

42 b1 = assemble (L1, noslip);

43 utmp = A1 \ b1;

44 u1 = Function ('u1', V, utmp);

45

46 # Pressure correction

47 L2 = LinearForm ('PressureUpdate', Q, u1, k);

48 [A2, b2] = assemble_system (a2, L2, inflow, outflow);

49 ptmp = A2 \ b2;

50 p1 = Function ('p1', Q, ptmp);

51

52 # Velocity correction

53 L3 = LinearForm ('VelocityUpdate', V, k, u1, p1);

54 b3 = assemble (L3, noslip);

55 ut = A3 \ b3;

56 u1 = Function ('u0', V, ut);

57

58 # Save to file

59 save (p1, sprintf ("p_%3.3d", ++i));

60 save (u1, sprintf ("u_%3.3d", i));

61

62 # Move to next time step

63 u0 = u1;

64 t += dt

65

66 end

L-shape-domain.m
1 name = [tmpnam ".geo"];

2 fid = fopen (name, "w");

3 fputs (fid,"Point (1) = {0, 0, 0, 0.1};\n");

4 fputs (fid,"Point (2) = {1, 0, 0, 0.1};\n");

5 fputs (fid,"Point (3) = {1, 0.5, 0, 0.1};\n");

6 fputs (fid,"Point (4) = {0.5, 0.5, 0, 0.1};\n");

7 fputs (fid,"Point (5) = {0.5, 1, 0, 0.1};\n");

8 fputs (fid,"Point (6) = {0, 1, 0,0.1};\n");

18 CHAPTER 4. MORE ADVANCED EXAMPLES

9

10 fputs (fid,"Line (1) = {5, 6};\n");

11 fputs (fid,"Line (2) = {2, 3};\n");

12

13 fputs (fid,"Line(3) = {6,1,2};\n");

14 fputs (fid,"Line(4) = {5,4,3};\n");

15 fputs (fid,"Line Loop(7) = {3,2,-4,1};\n");

16 fputs (fid,"Plane Surface(8) = {7};\n");

17 fclose (fid);

18 msho = msh2m_gmsh (canonicalize_file_name (name)(1:end-4),...

19 "scale", 1,"clscale", .2);

20 unlink (canonicalize_file_name (name));

4.2 A penalization method to take into account

obstacles in incompressible viscous �ows

Bibliography

[1] http://www.gnu.org/software/octave/download.html.

[2] http://fenicsproject.org/download/.

[3] http://fenicsproject.org/documentation/ufl/1.2.0/user/user_
manual.html.

19

http://www.gnu.org/software/octave/download.html
http://fenicsproject.org/download/
http://fenicsproject.org/documentation/ufl/1.2.0/user/user_manual.html
http://fenicsproject.org/documentation/ufl/1.2.0/user/user_manual.html

	Introduction
	Introduction to Fem-fenics
	Installation
	General layout

	Implementation
	General layout of a class
	General layout of a function
	Mesh generation and conversion
	Sparse Matrices
	Shared pointer
	Polymorphism
	Code release
	Code on the fly
	Autoconf

	More Advanced Examples
	Navier-Stokes equation with Chorin-Temam projection algorithm
	A penalization method to take into account obstacles in incompressible viscous flows

