
Google Summer of Code 2013

GNU-Octave

Fem-fenics

Genaral Purpose Finite Element Library for

GNU-Octave

Marco Vassallo

Version 0.0

December 20, 2013

2

Contents

1 Introduction 5

2 Introduction to Fem-fenics 7
2.1 Installation . 7
2.2 General layout and �rst example 7

3 Implementation 13
3.1 General layout of a class . 13

3.1.1 Shared pointer . 16
3.1.2 The mesh class . 16
3.1.3 The functionspace class 22

3.2 General layout of a function . 23
3.2.1 Wrappers to UFL . 23
3.2.2 Wrappers to DOLFIN . 25
3.2.3 Wrapper to FEniCS . 26
3.2.4 Code on the �y . 26

4 More Advanced Examples 27
4.1 Mixed Formulation for the Poisson Equation 27
4.2 Incompressible Navier-Stokes equation 29
4.3 HyperElasticity . 32
4.4 Fictitious Domain . 37

A API reference 39
A.1 Import problem de�ned with u� 39
A.2 Problem geometry and FE space 40
A.3 Problem variables . 41
A.4 De�nition of the abstract Variational problem 42
A.5 Creation of the discretized problem 44
A.6 Post processing . 45

B Autoconf and Automake 47

3

4 CONTENTS

Chapter 1

Introduction

Fem-fenics is an open source package (pkg) for the resolution of partial dif-
ferential equations with Octave. The project has been developed during the
Google Summer of Code 2013 with the help and the sustain of the GNU-Octave
community under the supervision of prof. De Falco.

The report is structured as follows:

• in chapter 2 we provide a simple reference guide for beginners

• in chapter 3 is presented a detailed explanation of the relevant parts of the
program. In this way, the interested reader can see what there is �behind�
and expecially anyone interested in it can learn quickly how it is possible
to extend the code and contribute to the project.

• in chapter 4 more examples are provided. For a lot of them, we present
the octave script alongside the code for Fenics (in C++ and/or Python)
in order to provide the user with a quick reference guide.

If you think that going inside the report could be boring, it is available a
wiki at

http://wiki.octave.org/Fem-fenics

while if you want to see how the project has grown during the time you can give
a look at

http://gedeone-gsoc.blogspot.com/

Finally, the API is available as Appendix but also at the following address

http://octave.sourceforge.net/fem-fenics/overview.html

5

http://wiki.octave.org/Fem-fenics
http://gedeone-gsoc.blogspot.com/
http://octave.sourceforge.net/fem-fenics/overview.html

6 CHAPTER 1. INTRODUCTION

Chapter 2

Introduction to Fem-fenics

2.1 Installation

Fem-fenics is an external package for Octave, which means that it can be in-
stalled only once that Octave has been successfully installed on the PC. Fur-
thermore, as Fem-fenics is based on Fenics, it is also needed a running version
of the latter. They can be easily installed following the guidelines provided on
the o�cial Octave [1] and Fenics [2] websites. Once that Octave and Fenics are
correctly installed, to install Fem-fenics open Octave (which now is provided
with a new amazing GUI) and type

>> pkg install fem-fenics -forge

That's all! For any problem during the installation don't hesitate to contact
us. To be sure that everything is working �ne, load the fem-fenics pkg and run
one of the examples provided within the package:

>> pkg load fem-fenics

>> femfenics_examples()

For a description of the examples, look at chapter 4.

NOTE For completing the installation process successfully, the form compiler
FFC and the header �le dol�n.h should also be available on the machine. They
are managed automatically by Fenics if it is installed as a binary package or
with Dorsal. If it has been done manually, please be sure that they are available
before starting the installation of Fem-fenics.

2.2 General layout and �rst example

A generic problem has to be solved in two steps:

1. a .u� �le where the abstract problem is described: this �le has to be writ-
ten in Uni�ed Form Language (UFL), which is a domain speci�c language
for de�ning discrete variational forms and functionals in a notation close
to pen-and-paper formulation. UFL is easy to learn, and the User manual
provides explanations and examples [3].

7

8 CHAPTER 2. INTRODUCTION TO FEM-FENICS

2. a script �le .m where the abstract problem is imported and a speci�c
problem is implemented and solved: this is the script �le where the fem-
fenics functions described in the following chapters are used.

We provide immediately a simple example in order to familiarize the user
with the code.

The Poisson equation In this example, we show how it is possible to solve
the Poisson equation with mixed Boundary Conditions. If we indicate with Ω
the domain and with Γ = ΓN∪ΓD the boundaries, the problem can be expressed
as

∆u = f on Ω

u = 0 on ΓD

∇u · n = g on ΓN

where f, g are data which represent the source and the �ux of the scalar variable
u. A possible variational formulation of the problem is:
�nd u ∈ H1

0,ΓD
:

a(u, v) = L(v) ∀v ∈ H1
0,ΓD

a(u, v) =

∫
Ω

∇u · ∇v

L(v) =

∫
Ω

fv +

∫
ΓN

gv

The abstract problem can thus be written in the Poisson.ufl �le immedi-
ately. The only thing that has to be speci�ed at this stage is the space of Finite
Elements used for the discretization of H1

0,ΓD
. In this example, we choose the

space of continuous lagrangian polynomial of degree one

FiniteElement("Lagrange", triangle, 1)

but many more possibilities are available.

1 element = FiniteElement("Lagrange", triangle, 1)

2

3 u = TrialFunction(element)

4 v = TestFunction(element)

5

6 f = Coefficient(element)

7 g = Coefficient(element)

8

9 a = inner(grad(u), grad(v))*dx

10 L = f*v*dx + g*v*ds

It is always a good idea to check if the u� code is correctly written before
importing it into Octave. Typing

>> ffc -l dolfin Poisson.ufl

2.2. GENERAL LAYOUT AND FIRST EXAMPLE 9

in the shell shouldn't produce any error.
We can now implement and solve a speci�c instance of the Poisson problem

with Octave. The parameters are set as follow

• Ω = [0, 1]× [0, 1]

• ΓD = (0, y) ∪ (1, y) ⊂ ∂Ω

• ΓN = (x, 0) ∪ (x, 1) ⊂ ∂Ω

• f = 10 exp
(x− 0.5)2 + (y − 0.5)2

0.02

• g = sin(5x)

As a �rst thing we need to load into Octave the pkgs previously installed

pkg load fem-fenics msh

The u� �le can thus be imported inside Octave. For every speci�c element
de�ned inside the u� �le there is a speci�c function which stores it for later use

• ufl_import_FunctionSpace ('Poisson') is a function which looks for
the �nite element space de�ned inside the �le called Poisson.u�; if every-
thing is ok, it generates a function which we will use later

• ufl_import_BilinearForm ('Poisson') is a function which looks for
the rhs of the equation, i.e. for the bilinear form de�ned inside Poisson.u�

• ufl_import_LinearForm ('Poisson') is a function which looks for the
linear form.

In some cases one could be interested in using these functions separately but
if, as in our example, all the three elements are de�ned in the same u� �le (and
only in this case), the import_ufl_Problem ('Poisson') can be used, which
generates at once all the three functions described above

ufl_import_Problem ('Poisson');

To set the concrete elements which de�ne the problem, the �rst things to
do is to create a mesh. It can be managed easily using the msh pkg. For a
structured squared mesh

x = y = linspace (0, 1, 33);

msho = msh2m_structured_mesh (x, y, 1, 1:4);

Once that the mesh is available, we can thus initialize the Fem-fenics mesh using
the function Mesh ():

mesh = Mesh (msho);

To initialize the functional space, we have to specify as argument only the
fem-fenics mesh, because the �nite element type and the polynomial degree have
already been speci�ed in the u� �le:

V = FunctionSpace('Poisson', mesh);

10 CHAPTER 2. INTRODUCTION TO FEM-FENICS

Essential BC can now be applied using DirichletBC (); this function receives
as argument the functional space, a function handle which speci�es the value to
set, and the label of the sides where the BC applies. In this case, homogenous
boundary conditions hold on the left and right side of the square

bc = DirichletBC(V, @(x, y) 0.0, [2; 4]);

The last thing to do before solving the problem, is to set the coe�cients speci�ed
in the u� �le. To set them, the function Expression () can be used passing
as argument a string which speci�es the name of the coe�cient (it is important
that they are called in the same way as in the u� �le: the source term 'f' and
the normal �ux 'g'), and a function handle with the value prescribed:

ff = Expression ('f',

@(x,y) 10*exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02));

gg = Expression ('g', @(x,y) sin (5.0 * x));

Another possibility for dealing with the coe�cients de�ned in the u� �le would
be to use the function Constant () or Function (). The coe�cients can thus
be used together with the FunctionSpace to set the Bilinear and the Linear form

a = BilinearForm ('Poisson', V, V);

L = LinearForm ('Poisson', V, ff, gg);

The discretized representation of our operator is obtained using the functions
assemble () or assemble_system (), which also allow to specify the BC(s) to
apply

[A, b] = assemble_system (a, L, bc);

Here A is a sparse matrix and b is a column vector. All the functionalities
available within Octave can now be exploited to solve the linear system. The
easisest possibility is the backslash command:

u = A \ b;

Once that the solution has been obtained, the u vector is converted into a Fem-
fenics function and plotted plot () or saved save () in the vtu format

u = Function ('u', V, sol);

save (u, 'poisson')

plot (u);

The complete code for the Poisson problem is reported below, while in �gure
2.1 is presented the output.

1 #load the pkg and import the ufl problem

2 pkg load fem-fenics msh

3 import_ufl_Problem ('Poisson')

4

5 # Create the mesh and define function space

6 x = y = linspace (0, 1, 33);

7 mesh = Mesh(msh2m_structured_mesh (x, y, 1, 1:4));

2.2. GENERAL LAYOUT AND FIRST EXAMPLE 11

Figure 2.1: The result for the Poisson equation

8 V = FunctionSpace('Poisson', mesh);

9

10 # Define boundary condition and source term

11 bc = DirichletBC(V, @(x, y) 0.0, [2;4]);

12 ff = Expression ('f', @(x,y) 10*exp(-((x - 0.5)^2 + (y - 0.5)^2) /

0.02));

13 gg = Expression ('g', @(x,y) sin (5.0 * x));

14

15 #Create the Bilinear and the Linear form

16 a = BilinearForm ('Poisson', V, V);

17 L = LinearForm ('Poisson', V, ff, gg);

18

19 #Extract the matrix and compute the solution

20 [A, b] = assemble_system (a, L, bc);

21 sol = A \ b;

22 u = Function ('u', V, sol);

23

24 # Save solution in VTK format and plot it

25 save (u, 'poisson')

26 plot (u);

12 CHAPTER 2. INTRODUCTION TO FEM-FENICS

Chapter 3

Implementation

Fem-fenics aims to �ll a gap in Octave: even if there are packages for the
creation of mesh [4], for the postprocessing of data [5] and for the resolution of
some speci�c pde [6] [7], no general purpose �nite element library is available.

The goal of the project is thus to provide a package which can be used
to solve user de�ned problems and which is able to exploit the functionality
provided with Octave.

Instead of writing a library starting from scratch, an interface to one of the
�nite element library which are already available has been created. Among
the many libraries taken into account, the one which was best suited for our
purposes seemed to be the FEniCS project. It �is a collection of free, open source,
software components with the common goal to enable automated solution of
pde.� In particular, Dol�n is the C++/Python interface of FEniCS, providing
a consistent Problem Solving Environment for ODE and PDE. The idea has
been to create wrappers in Octave for C++ Dol�n, in a similar way to what
it has been done for Python. This is a very natural choice, because Octave is
mainly written in script language and in C++. It is in fact possible to implement
an Octave interpreter function in C++ through the native oct-�le interface or,
conversely, to use Octave's Matrix/Array Classes in a C++ application [8].

The works can be summarized as follows (�g. 3.1):
the elements already available in Octave for the resolution of PDE (Mesh

and Linear Algebra) have been exploited, and wrappers to the other FEniCS
functions added. To allow exchanges between these programs, the necessary
functions for converting an Octave mesh/matrix into a FEniCS one and vicev-
ersa have been written.

Two main ideas have guided us throughout the realization of the pkg:

• keep the syntax as close as possible to the original one in Fenics (Python)

• make the interface as simple as possible.

3.1 General layout of a class

Seven new classes are implemented for dealing with FEniCS objects and for
using them inside Octave:

• boundarycondition stores and builds a dol�n::DirichletBC

13

14 CHAPTER 3. IMPLEMENTATION

Figure 3.1: General layout of the package

3.1. GENERAL LAYOUT OF A CLASS 15

• coe�cient stores an expression object which is used for the evaluation of
user de�ned values

• expression is needed for internal use only as explained below

• form stores a general dol�n::Form and can be used both for a dolfn::BilinearForm
and for a dol�n::LinearForm

• function for the dol�n::Function objects

• functionspace stores the user de�ned FunctionSpace

• mesh converts a PDE-tool like mesh structure in a dol�n::Mesh

The classes are written with the �usual� C++ style, but they need to be
derived publicly from octave_base_value and to be added to the Octave inter-
preter [8]. When a type is used for the �rst time during a session, it is also
temporarily registered in the interpreter after all the other basic types (int,
double, ...).

The general layout of a class can thus be kept simple and with the main
purpose of storing the associated FEniCS objects, which is done throughout
boost::shared_ptr< > to the corresponding FEniCS type. All the classes also
implement at least two constructors: a default one which is necessary to register
a type in the Octave interpreter, and a constructor which takes as argument the
corresponding dol�n type.

As an example, the form class implementation follows, while classes which
di�er from the general layout are presented below in more details.

1 #ifndef _FORM_OCTAVE_

2 #define _FORM_OCTAVE_

3

4 #include <memory>

5 #include <vector>

6 #include <dolfin.h>

7 #include <octave/oct.h>

8

9 class form : public octave_base_value

10 {

11

12 public:

13

14 form () : octave_base_value () {}

15

16 form (const dolfin::Form _frm)

17 : octave_base_value (), frm (new dolfin::Form (_frm)) {}

18

19 form (boost::shared_ptr <const dolfin::Form> _frm)

20 : octave_base_value (), frm (_frm) {}

21

22 void

23 print (std::ostream& os, bool pr_as_read_syntax = false) const

24 {

25 os << "Form " << ": is a form of rank " << frm->rank ()

26 << " with " << frm->num_coefficients ()

16 CHAPTER 3. IMPLEMENTATION

27 << " coefficients" << std::endl;

28 }

29

30 ~form(void) {}

31

32 bool is_defined (void) const { return true; }

33

34 const dolfin::Form & get_form (void) const { return (*frm); }

35

36 const boost::shared_ptr <const dolfin::Form> &

37 get_pform (void) const { return frm; }

38

39 private:

40

41 boost::shared_ptr <const dolfin::Form> frm;

42

43 DECLARE_OCTAVE_ALLOCATOR;

44 DECLARE_OV_TYPEID_FUNCTIONS_AND_DATA;

45

46 };

47

48 static bool form_type_loaded = false;

49

50 DEFINE_OCTAVE_ALLOCATOR (form);

51 DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (form, "form", "form");

52 #endif

3.1.1 Shared pointer

In all the classes presented above, the private members are stored using a
boost::shared_ptr< > to the corresponding FEniCS type. This is done be-
cause we have to refer in several places to resources which are built dynamically
and we want that they are destroyed only when the last reference is destroyed
[9]. For example, if we have two di�erent functional spaces in the same prob-
lem, like with Navier-Stokes for the velocity and the pressure, the mesh is shared
between them and no one has its own copy. Furthermore, they are widely sup-
ported inside DOLFIN, and it can thus be avoided to have a copy of the same
object for FEniCS and another one for DOLFIN: there is just one copy which
is shared between DOLFIN and FEniCS.

3.1.2 The mesh class

In addition to usual methods, the mesh class implemens functionalities which
allow to deal with meshes as they are currently available with the msh pkg,
i.e. in the (p, e, t) format, and in Fenics, i.e. in the xml Dol�n format. It is
therefore necessary to have two di�erent constructors

mesh (Array<double>& p, Array<octave_idx_type>& e,

Array<octave_idx_type>& t);

mesh (std::string _filename)

: octave_base_value (), pmsh (new dolfin::Mesh(_filename)) {}

3.1. GENERAL LAYOUT OF A CLASS 17

Figure 3.2: The (very) simple mesh for our example

where the �rst one accepts as input a mesh in (p, e, t) format and converts
it into a xml one, while the latter loads the mesh stored in the _�lename.xml
�le.

The constructors are used within the Mesh () function, which therefore ac-
cepts as argument either a mesh generated within the msh pkg or a string with
the name of the �le where the dol�n mesh is stored.

Furthermore, if a mesh is stored in another di�erent format, the program
dol�n-convert can try to convert it to the dol�n xml format. For example, for
a mesh generated with Metis:

Shell:

>> dolfin-convert msh.gra msh.xml

and then inside the Octave script:

mesh = Mesh ('msh.xml');

Before exploring the code in more details, the main di�erences between the
two storing formats are presented using the very simple, but rather instructive,
example of a unit square mesh with just two elements, �g. 3.2.

pet A mesh is represented using the three matrices p, e, t, and, using msh, we
can easily obtain the mesh for our example typing

mesh = msh2m_structured_mesh ([0 1], [0 1], 1, [11 12 12 13])

The matrix p stores information about the coordinates of the vertices

>> mesh.p

0 0 1 1 x-coordinates
0 1 0 1 y-coordinates

Thus the vertex in the nth column is labelled as the vertex number n, and so
on.

The matrix t stores information about the connectivity

18 CHAPTER 3. IMPLEMENTATION

>> mesh.t

1 1 number of the �rst vertex of the element
3 4 number of the second vertex of the element
4 2 number of the third vertex of the element
0 0

The �rst element is thus the one obtained connecting vertices 1-3-4 and so on.
The matrix e stores information related to every side edge, like the number

of the vertices of the boundary elements, and the number of the geometrical
border containing the edge, which is a convenient way to deal with boundary
conditions in a problem.

>> mesh.e

1 3 2 1 �rst vertex of the side edge
3 4 4 2 second vertex of the side edge
0 0 0 0
0 0 0 0

11 12 12 13 label of the geometrical border containing the edge
0 0 0 0
1 1 1 1

The side edge between vertex 1-3 is labelled 11, between 3-4 is 12...

dol�n xml A mesh is an object of the dol�n::Mesh class which stores infor-
mation only about the coordinates of the vertices (like p) and the information
about the connectivity (like t). A mesh can thus be manipulated using the
functions and the methods of the class, which are presented below. Instead, the
information about boundaries is not directly stored in the mesh. The mesh used
in the example is stored as

<?xml version="1.0"?>

<dolfin xmlns:dolfin="http://fenicsproject.org">

<mesh celltype="triangle" dim="2">

<vertices size="4">

<vertex index="0" x="0.000e+00" y="0.000e+00" />

<vertex index="1" x="0.000e+00" y="1.000e+00" />

<vertex index="2" x="1.000e+00" y="0.000e+00" />

<vertex index="3" x="1.000e+00" y="1.000e+00" />

</vertices>

<cells size="2">

<triangle index="0" v0="0" v1="2" v2="3" />

<triangle index="1" v0="0" v1="1" v2="3" />

</cells>

</mesh>

</dolfin>

Conversion between the formats The �rst necessary step in our way to a
package which links Octave and FEniCS is to convert a mesh from the (p, e, t)

3.1. GENERAL LAYOUT OF A CLASS 19

format into the dol�n xml one. Furthermore, as dol�n provides methods and
functions which allow to manipulate a mesh and which don't have a conter-
part in the msh pkg, we have also created wrappers for them (speci�cally for
mesh::re�ne).

As it has been shown above, the main di�erence between (p, e, t) and DOLFIN
xml is the way in which the boundaries are distinguished. The former stores
all the information in the e matrix, while the latter uses the functions and the
methods of the dol�n::mesh class to set/get information about a mesh. The
most useful classes available in dol�n are recalled

• MeshIterator To know whether an edge belongs or not to the boundary,
we can iterate over all the edges of our mesh using the classes provided by
DOLFIN:

for (dolfin::FacetIterator f (mesh); ! f.end (); ++f)

{

if ((*f).exterior () == true)

{

//do something with the boundary cells

}

}

• MeshFunction To store data related to a mesh, dol�n provides the tem-
plate class MeshFunctions. "A MeshFunction is a function that can be
evaluated at a set of mesh entities. A MeshFunction is discrete and is
only de�ned at the set of mesh entities of a �xed topological dimension.
A MeshFunction may for example be used to store a global numbering
scheme for the entities of a (parallel) mesh, marking sub domains or
boolean markers for mesh re�nement." [10] For example, in the function
mshm_refine of the msh package, the list of cells to be re�ned is stored
as a MeshFunction, which for every cell says whether or not it has to be
re�ned:

dolfin::CellFunction<bool> cell_markers (mesh);

cell_markers.set_all (false);

for (octave_idx_type i = 0;

i < cells_to_refine.length (); ++i)

cell_markers.set_value (cells_to_refine (i) , true);

• MeshValueCollection "It di�ers from the MeshFunction class in two
ways. First, data do not need to be associated with all entities (only a
subset). Second, data are associated with entities through the correspond-
ing cell index and local entity number (relative to the cell), not by global
entity index, which means that data may be stored robustly to �le."[11] It
is thus obvious that it is better to use the MeshValueCollection whenever
saving or writing a mesh.

The container classes presented above can be used by their own, but to
set/get data from a mesh it is better to use the methods provided by the classes:

• MeshDomains "The class MeshDomains stores the division of a Mesh
into subdomains. For each topological dimension 0 <= d <= D, where

20 CHAPTER 3. IMPLEMENTATION

D is the topological dimension of the Mesh, a set of integer markers are
stored for a subset of the entities of dimension d, indicating for each entity
in the subset the number of the subdomain. It should be noted that the
subset does not need to contain all entities of any given dimension; entities
not contained in the subset are �unmarked�." [12]

• MeshData "The class MeshData is a container for auxiliary mesh data,
represented either as MeshFunction over topological mesh entities, arrays
or maps. Each dataset is identi�ed by a unique user-speci�ed string." [13]

Geometry from (p, e, t) to dol�n xml Converting the vertices and
cells from (p, e, t) in the xml format can be done using the dol�n editor, while
caution has to be taken for storing information associated with boundaries and
subdomains, as presented in the next paragraph.

dolfin::MeshEditor editor;

boost::shared_ptr<dolfin::Mesh> msh (new dolfin::Mesh ());

editor.open (*msh, D, D);

editor.init_vertices (p.cols ());

editor.init_cells (t.cols ());

if (D == 2)

{

for (uint i = 0; i < p.cols (); ++i)

editor.add_vertex (i,

p.xelem (0, i),

p.xelem (1, i));

for (uint i = 0; i < t.cols (); ++i)

editor.add_cell (i,

t.xelem (0, i) - 1,

t.xelem (1, i) - 1,

t.xelem (2, i) - 1);

}

if (D == 3)

{

...

}

editor.close ();

Subdomain markers: from (p, e, t) to dol�n xml There are no
fundamental di�erences between the 2D and 3D case, and they are thus treated
together referring to the general dimension D. The subdomain information is
contained in the t matrix, and it is temporarily copied to a MeshValueCollection.
For every column of the t matrix, i.e. for every element of the mesh, we have
to look for the corresponding element in the DOLFIN mesh. We use the class
MeshIterator for moving around on the DOLFIN mesh:

dolfin::MeshValueCollection<uint> my_cell_marker (D);

3.1. GENERAL LAYOUT OF A CLASS 21

for (uint i = 0; i < num_cells; ++i)

dolfin::Vertex v (mesh, t(0, i));

for (dolfin::CellIterator f (v); ! f.end (); ++f)

{

if ((*f) == all_vertices_in_the_ith_column)

{

my_cell_marker.set_value

((*f).index (), t(last_row, i), mesh);

break;

}

}

The all_vertices_in_the_ith_column is just like a pseudo code: we have
to be sure that the Cell pointed by f is the one corresponding to the ith column
of the matrix, checking the vertices one-by-one:

in 2D the cell is a triangle, and we thus have to check 3 vertices. As we don't
know the order in which vertices are visited, we have to check all the 3! = 6
di�erent combinations:

...

if ((*f).entities(0)[0] == t(0, i)

&& (*f).entities(0)[1] == t(1, i)

&& (*f).entities(0)[2] == t(2, i)

|| ... check the other 5 possibilities...)

....

where the entities(std::size_t dim) method returns an array with the
indexes of the elements of dimension dim. Thus we use dim = 0 as we are
looking for vertices.

In the 3D case, our cell is a tetrahedron, and we have to check all the 4! = 24
possibilities, each of which is composed by 4 assertions; in total we have almost
one hundred conditions!

Now that the information is stored in our function, it can be associated to
the mesh

*(mesh.domains ().markers (D)) = my_marked_cell;

Subdomain markers: from dol�n xml to (p, e, t) In the DOLFIN
.xml �le, the information is stored like:

...

<mesh_value_collection name="m" type="uint" dim="2" size="2">

<value cell_index="0" local_entity="0" value="1"/>

<value cell_index="1" local_entity="0" value="2"/>

...

When the �le is read using DOLFIN, the information is automatically as-
sociated with the mesh as a MeshValueCollection named cell_domains, which
can be accessed to extract the information using the MeshDomains class. Ob-
viously we have to be sure that the information is available within the �le that
we are reading, and that it is related to Cell, i.e. to elements of dimension D,
before it is associated to the last row of the t matrix:

22 CHAPTER 3. IMPLEMENTATION

dolfin::MeshFunction<uint> my_cell_marker;

if (! mesh.domains ().is_empty ())

if (mesh.domains ().num_marked (D) != 0)

my_cell_marker = *(mesh.domains ().cell_domains ());

for (j = 0; j < t.cols (); ++j)

t(D + 1, j) = my_cell_marker[j];

Boundary Markers For boundary markers, things work in a similar way,
as long as we remember that we are working with objects of dimension D - 1.
In this case, the main di�erence is in the .xml �le: it is no longer enough to say
to what cell element the label is referred to, but we have to specify to which
D − 1 entity (a side or a face) the label is referred. For example:

....

mesh_value_collection name="m" type="uint" dim="1" size="4">

<value cell_index="0" local_entity="0" value="12"/>

<value cell_index="0" local_entity="2" value="11"/>

<value cell_index="1" local_entity="0" value="12"/>

<value cell_index="1" local_entity="2" value="13"/>

...

The cell number ”0” is a triangle, and to the local_entity number ”0”, i.e.
to the side number ”0”, is associated the label ”12”, while to the side number
”2” is associated the label ”11”. To the side number ”1”, there are no labels
associated. The number of the local_entity refers to the enumeration of the
reference element. In any case, it is DOLFIN which takes care of the conversion
of indeces from this format to the usual one, and we can thus use methods and
functions as explained for the subdomain markers.

Mesh re�ne Now that it is possible to convert meshes between Octave
and DOLFIN, the functions available in the dol�n::mesh class can be used to
improve the functionality of the msh package. For the moment, it has been
added the possibility of re�ning a mesh, either uniformly or specifying the list
of the vertices we want to be re�ned. The function is now part of the msh
pkg[4], and a more detailed desciption has been provided previously [14].

3.1.3 The functionspace class

A dol�n::FunctionSpace is de�ned by specifying a mesh and the type of the
�nite element which we want to use. The mesh is handled as presented above,
while the FE are speci�ed inside the .u� �le. Possible choices are [15]:

3.2. GENERAL LAYOUT OF A FUNCTION 23

Finite Element Space Symbol

Argyris ARG *
Arnold�Winther AW *
Brezzi�Douglas�Marini BDM
Crouzeix�Raviart CR
Discontinuous Lagrange DG
Hermite HER*
Lagrange CG
Mardal�Tai�Winther MTW *
Morley MOR*
Nédélec 1st kind H (curl) N1curl
Nédélec 2nd kind H (curl) N2curl
Raviart�Thomas RT

where the Finite Elements denoted with * are not yet fully supported inside
FEniCS.

3.2 General layout of a function

There are three general kinds of functions in the code: functions which create
an abstract problem (wrappers to UFL), functions which create the speci�c
instance of a problem (wrapper to FEniCS) and functions which discretize the
problem and generate the matrices.

3.2.1 Wrappers to UFL

As stated in section 2.2, a problem is divided in two �les:a .u� �le where the
abstract problem is described in Uni�ed Form Language (UFL), and a script
�le .m where a speci�c problem is implemented and solved. We suppose that
they are called Poisson.u� and Poisson.m . In order to use the information
stored in the UFL �le, i.e. the bilinear and the linear form, they have to be
imported inside Octave. When the UFL �le is compiled using the �c compiler,
a header �le Poisson.h is generated. In this header �le, it is de�ned the Poisson
class, which derives from dol�n::Form, and the constructor for the bilinear and
linear form are set. This �le is thus available only at compilation time, but it
has to be included somehow in the wrapper function for the Bilinear and the
Linear form. An easy solution would have been to write a set of pre established
problems where the user could only change the values of the coe�cient for a
speci�c problem; but, as we want to let the user free to write his own variational
problem, a di�erent approach has been adopted. The u� �le is compiled at
run time and generates a header �le. Then, a Poisson.cc �le is written from
a template which takes as input the name of the header �le and is compiled
including the Poisson.h �le; now the corresponding octave functions for the
speci�c problem is available and will be used from BilinearForm, LinearForm,
FunctionSpace, As an example it is presented the import_u�_BilinearForm
function.

1 function import_ufl_BilinearForm (var_prob)

2

3 ...

24 CHAPTER 3. IMPLEMENTATION

4

5 %the function which writes the var-prob.cc file

6 generate_rhs (var_prob);

7

8 %the function which writes the makefile

9 generate_makefile (var_prob, private);

10

11 % the makefile is executed in a terminal:

12 % 1) generate the header file from ufl

13 % ffc -l dolfin var_prob.ufl

14 % 2) compile the var_prob.cc

15 % mkoctfile var_prob.cc -I.

16 system (sprintf ("make -f Makefile_%s rhs", var_prob));

17

18 ...

19

20 endfunction

1 function output = generate_rhs (ufl_name)

2

3 STRING ="

4 #include "@@UFL_NAME@@.h"

5

6 ...

7

8 DEFUN_DLD (@@UFL_NAME@@_BilinearForm, args, , ""A =

fem_rhs_@@UFL_NAME@@ (FUNCTIONAL SPACE, COEFF)"")

9 {

10 ...

11

12 const functionspace & fspo1

13 = static_cast<const functionspace&> (args(0).get_rep ());

14 const functionspace & fspo2

15 = static_cast<const functionspace&> (args(1).get_rep ());

16

17 const dolfin::FunctionSpace & U = fspo1.get_fsp ();

18 const dolfin::FunctionSpace & V = fspo2.get_fsp ();

19 @@UFL_NAME@@::BilinearForm a (U, V);

20

21 ...

22

23

24 }";

25

26 STRING = strrep (STRING, "@@UFL_NAME@@", ufl_name);

27

28 fid = fopen (sprintf ("%s_BilinearForm.cc", ufl_name), 'w');

29 fputs (fid, STRING);

30 output = fclose (fid);

31

32 endfunction

3.2. GENERAL LAYOUT OF A FUNCTION 25

3.2.2 Wrappers to DOLFIN

The general layout of a function is very simple and it is composed of 4 steps
which we describe using an example:

1 DEFUN_DLD (fem_fs, args, , "initialize a fs from a mesh")

2 {

3 // 1 read data

4 const mesh & msho = static_cast<const mesh&> (args(0).get_rep

());

5 // 2 convert the data from octave to dolfin

6 const dolfin::Mesh & mshd = msho.get_msh ();

7 // 3 build the new object using dolfin

8 boost::shared_ptr <const dolfin::FunctionSpace> g (new

Laplace::FunctionSpace (mshd));

9 // 4 convert the new object from dolfin to Octave and return it

10 octave_value retval = new functionspace(g);

11 return retval;

12 }

All the functions presented above follow this general structure, and thus here
we present in detail only functions which present some di�erences.

Sparse Matrices

Polymorphism

DirichletBC and Coe�cient

These two functions take as input a function handle which cannot be directly
evaluated by a dol�n function to set, respectively, the value on the boundary or
the value of the coe�cient. It has thus been derived from dol�n::Expression a
class "expression" which has as private member an octave function handle and
which overloads the function eval(). In this way, an object of the class expression
can be initialized throughout a function handle and can be used inside dol�n
because "it is" a dol�n::Expression

1 class expression : public dolfin::Expression

2 {

3 ...

4

5 void

6 eval (dolfin::Array<double>& values,

7 const dolfin::Array<double>& x) const

8 {

9 octave_value_list b;

10 b.resize (x.size ());

11 for (std::size_t i = 0; i < x.size (); ++i)

12 b(i) = x[i];

13 octave_value_list tmp = feval (f->function_value (), b);

14 Array<double> res = tmp(0).array_value ();

15

16 for (std::size_t i = 0; i < values.size (); ++i)

17 values[i] = res(i);

18 }

26 CHAPTER 3. IMPLEMENTATION

19

20 private:

21 octave_fcn_handle * f;

22 };

DirichletBC The BC are imposed directly to the mesh setting to zero all
the o� diagonal elements in the corresponding line. This means that we could
loose the symmetry of the matrix, if any. To avoid this problem, instead of the
method apply() it is possible to use the function assemble_system() , which
preserves the symmetry of the system but which needs to build together the lhs
and the rhs.

Coe�cient The coe�cient of the variational problem can be speci�ed using
either a Coe�cient or a Function. They are di�erent objects which behave in
di�erent ways: a Coe�cient, as exlained above, overloads the eval() method
of the dol�n::Expression class and it is evaluated at run time using the octave
function feval(). A Function instead doesn't need to be evaluated because it is
assembled copying element-by-element the values contained in the input vector.

3.2.3 Wrapper to FEniCS

3.2.4 Code on the �y

Chapter 4

More Advanced Examples

In this chapter more examples are provided. At the beginning of each section,
the problem is brie�y presented and then the Octave script for the resolution of
the problem using Fem-fenics is presented alongside the code written in C++
and/or the Python. For each problem, we refer the reader to the complete
desciption on the FEniCS website.

4.1 Mixed Formulation for the Poisson Equation

In this example the Poisson equation is solved with a �mixed approach�: it is
usedthe stable FE space obtained using Brezzi-Douglas-Marini polynomial of
order 1 and Dicontinuos element of order 0.

−div (σ(x, y))) = f(x, y) in Ω

σ(x, y) = ∇u(x, y) in Ω

u(x, y) = 0 on ΓD

(σ(x, y)) · n = sin(5x) on ΓN

A complete description of the problem is avilable on the Fenics website [16].

Listing 4.1: Fem-fenics Listing 4.2: Python
pkg load fem-fenics msh from dolfin import *

import_ufl_Problem ('MixedPoisson')

Create mesh # Create mesh

x = y = linspace (0, 1, 33); mesh = UnitSquareMesh(32, 32)

mesh = Mesh(msh2m_structured_mesh (x, y, 1,

1:4));

Define function spaces and mixed (product)

File MixedPoisson.ufl space

BDM = FiniteElement("BDM", triangle, 1) BDM = FunctionSpace(mesh, "BDM", 1)

DG = FiniteElement("DG", triangle, 0) DG = FunctionSpace(mesh, "DG", 0)

W = BDM * DG W = BDM * DG

27

28 CHAPTER 4. MORE ADVANCED EXAMPLES

V = FunctionSpace('MixedPoisson', mesh);

Define trial and test function

File MixedPoisson.ufl # Define trial and test functions

(sigma, u) = TrialFunctions(W) (sigma, u) = TrialFunctions(W)

(tau, v) = TestFunctions(W) (tau, v) = TestFunctions(W)

CG = FiniteElement("CG", triangle, 1)

f = Coefficient(CG)

f = Expression ('f', f = Expression

@(x,y) 10*exp(-((x - 0.5)^2 + (y - ("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] -

0.5)^2) / 0.02)); 0.5, 2)) / 0.02)")

Define variational form # Define variational form

File MixedPoisson.ufl

a = (dot(sigma, tau) + div(tau)*u + a = (dot(sigma, tau) + div(tau)*u +

div(sigma)*v)*dx div(sigma)*v)*dx

L = - f*v*dx L = - f*v*dx

a = BilinearForm ('MixedPoisson', V, V);

L = LinearForm ('MixedPoisson', V, f);

Define function G such that G \cdot n = g

class BoundarySource(Expression):

def __init__(self, mesh):

self.mesh = mesh

def eval_cell(self, values, x, ufc_cell):

cell = Cell(self.mesh, ufc_cell.index)

n = cell.normal(ufc_cell.local_facet)

g = sin(5*x[0])

values[0] = g*n[0]

values[1] = g*n[1]

def value_shape(self):

return (2,)

G = BoundarySource(mesh)

Define essential boundary # Define essential boundary

def boundary(x):

bc1 = DirichletBC (SubSpace (V, 1), @(x,y) [0; return x[1] < DOLFIN_EPS or x[1] > 1.0 -

-sin(5.0*x)], 1); DOLFIN_EPS

bc2 = DirichletBC (SubSpace (V, 1), @(x,y) [0;

sin(5.0*x)], 3); bc = DirichletBC(W.sub(0), G, boundary)

Compute solution # Compute solution

[A, b] = assemble_system (a, L, bc1, bc2); w = Function(W)

sol = A \ b; solve(a == L, w, bc)

func = Function ('func', V, sol);

sigma = Function ('sigma', func, 1); (sigma, u) = w.split()

u = Function ('u', func, 2);

4.2. INCOMPRESSIBLE NAVIER-STOKES EQUATION 29

Plot solution # Plot sigma and u

plot (sigma); plot(sigma)

plot (u); plot(u)

interactive()

Copyright 2011, The FEniCS Project

4.2 Incompressible Navier-Stokes equation

In this example the incompressible Navier-Stokes equation

∂u

∂t
+ (u · ∇)u− ν∆u +∇p = f in Ω

∇ · u = 0 in Ω

are solved using the Chorin-Temam algorithm. The L-shaped domain Ω can be
obtained using the msh pkg.

1 name = [tmpnam ".geo"];

2 fid = fopen (name, "w");

3 fputs (fid,"Point (1) = {0, 0, 0, 0.1};\n");

4 fputs (fid,"Point (2) = {1, 0, 0, 0.1};\n");

5 fputs (fid,"Point (3) = {1, 0.5, 0, 0.1};\n");

6 fputs (fid,"Point (4) = {0.5, 0.5, 0, 0.1};\n");

7 fputs (fid,"Point (5) = {0.5, 1, 0, 0.1};\n");

8 fputs (fid,"Point (6) = {0, 1, 0,0.1};\n");

9

10 fputs (fid,"Line (1) = {5, 6};\n");

11 fputs (fid,"Line (2) = {2, 3};\n");

12

13 fputs (fid,"Line(3) = {6,1,2};\n");

14 fputs (fid,"Line(4) = {5,4,3};\n");

15 fputs (fid,"Line Loop(7) = {3,2,-4,1};\n");

16 fputs (fid,"Plane Surface(8) = {7};\n");

17 fclose (fid);

18 msho = msh2m_gmsh (canonicalize_file_name (name)(1:end-4),...

19 "scale", 1,"clscale", .2);

20 unlink (canonicalize_file_name (name));

The �ow is driven by an oscillating pressure pin(t) = sin 3t at the in�ow while
the pressure is kept constant pout = 0 at the out�ow. A complete description of
the problem is avilable on the Fenics website [17].

Listing 4.3: Fem-fenics Listing 4.4: Python
pkg load fem-fenics msh from dolfin import *

import_ufl_Problem ("TentativeVelocity");

import_ufl_Problem ("VelocityUpdate");

30 CHAPTER 4. MORE ADVANCED EXAMPLES

import_ufl_Problem ("PressureUpdate");

We can either load the mesh from the file as # Load mesh from file

in Dolfin but

we can also use the msh pkg to generate the

L-shape domain

as showed above

mesh = Mesh ('lshape.xml'); mesh = Mesh("lshape.xml")

Define function spaces (P2-P1). From ufl file # Define function spaces (P2-P1)

V = VectorElement("CG", triangle, 2)

Q = FiniteElement("CG", triangle, 1)

V = FunctionSpace ('VelocityUpdate', mesh); V = VectorFunctionSpace(mesh, "CG", 2)

Q = FunctionSpace ('PressureUpdate', mesh); Q = FunctionSpace(mesh, "CG", 1)

Define trial and test functions. From ufl # Define trial and test functions

file

u = TrialFunction(V) u = TrialFunction(V)

p = TrialFunction(Q) p = TrialFunction(Q)

v = TestFunction(V) v = TestFunction(V)

q = TestFunction(Q) q = TestFunction(Q)

Set parameter values. From ufl file # Set parameter values

nu = 0.01 dt = 0.01

dt = 0.01; T = 3

T = 3.; nu = 0.01

Define time-dependent pressure BC

p_in = Expression("sin(3.0*t)", t=0.0)

Define boundary conditions # Define boundary conditions

noslip = DirichletBC (V, @(x,y) [0; 0], [3, noslip = DirichletBC(V, (0, 0),

4]); "on_boundary && \

(x[0] < DOLFIN_EPS | x[1] <

DOLFIN_EPS | \

(x[0] > 0.5 - DOLFIN_EPS && x[1] >

0.5 - DOLFIN_EPS))")

inflow = DirichletBC(Q, p_in, "x[1] > 1.0 -

DOLFIN_EPS")

outflow = DirichletBC (Q, @(x,y) 0, 2); outflow = DirichletBC(Q, 0, "x[0] > 1.0 -

DOLFIN_EPS")

bcu = [noslip]

bcp = [inflow, outflow]

Create functions # Create functions

u0 = Expression ('u0', @(x,y) [0; 0]); u0 = Function(V)

u1 = Function(V)

p1 = Function(Q)

4.2. INCOMPRESSIBLE NAVIER-STOKES EQUATION 31

Define coefficients # Define coefficients

k = Constant ('k', dt); k = Constant(dt)

f = Constant ('f', [0; 0]); f = Constant((0, 0))

Tentative velocity step. From ufl file # Tentative velocity step

eq = (1/k)*inner(u - u0, v)*dx + F1 = (1/k)*inner(u - u0, v)*dx +

inner(grad(u0)*u0, v)*dx \ inner(grad(u0)*u0, v)*dx \

+ nu*inner(grad(u), grad(v))*dx - + nu*inner(grad(u), grad(v))*dx -

inner(f, v)*dx inner(f, v)*dx

a1 = BilinearForm ('TentativeVelocity', V, V, a1 = lhs(F1)

k); L1 = rhs(F1)

Pressure update. From ufl file # Pressure update

a = inner(grad(p), grad(q))*dx a2 = inner(grad(p), grad(q))*dx

L = -(1/k)*div(u1)*q*dx L2 = -(1/k)*div(u1)*q*dx

a2 = BilinearForm ('PressureUpdate', Q, Q);

Velocity update # Velocity update

a = inner(u, v)*dx a3 = inner(u, v)*dx

L = inner(u1, v)*dx - k*inner(grad(p1), L3 = inner(u1, v)*dx - k*inner(grad(p1), v)*dx

v)*dx

a3 = BilinearForm ('VelocityUpdate', V, V);

Assemble matrices # Assemble matrices

A1 = assemble (a1, noslip); A1 = assemble(a1)

A2 = assemble(a2)

A3 = assemble (a3, noslip); A3 = assemble(a3)

Use amg preconditioner if available

prec = "amg" if

has_krylov_solver_preconditioner("amg")

else "default"

Create files for storing solution

ufile = File("results/velocity.pvd")

pfile = File("results/pressure.pvd")

Time-stepping # Time-stepping

t = dt; i = 0; t = dt

while t < T while t < T + DOLFIN_EPS:

Update pressure boundary condition # Update pressure boundary condition

inflow = DirichletBC (Q, @(x,y) sin(3.0*t), p_in.t = t

1);

Compute tentative velocity step # Compute tentative velocity step

"Computing tentative velocity" begin("Computing tentative velocity")

L1 = LinearForm ('TentativeVelocity', V, k, b1 = assemble(L1)

u0, f); [bc.apply(A1, b1) for bc in bcu]

b1 = assemble (L1, noslip); solve(A1, u1.vector(), b1, "gmres",

32 CHAPTER 4. MORE ADVANCED EXAMPLES

utmp = A1 \ b1; "default")

u1 = Function ('u1', V, utmp); end()

Pressure correction # Pressure correction

"Computing pressure correction" begin("Computing pressure correction")

L2 = LinearForm ('PressureUpdate', Q, u1, k); b2 = assemble(L2)

[A2, b2] = assemble_system (a2, L2, inflow, [bc.apply(A2, b2) for bc in bcp]

outflow); solve(A2, p1.vector(), b2, "gmres", prec)

ptmp = A2 \ b2; end()

p1 = Function ('p1', Q, ptmp);

Velocity correction # Velocity correction

"Computing velocity correction" begin("Computing velocity correction")

L3 = LinearForm ('VelocityUpdate', V, k, u1, b3 = assemble(L3)

p1); [bc.apply(A3, b3) for bc in bcu]

b3 = assemble (L3, noslip); solve(A3, u1.vector(), b3, "gmres",

ut = A3 \ b3; "default")

u1 = Function ('u0', V, ut); end()

Plot solution # Plot solution

plot (p1); plot(p1, title="Pressure", rescale=True)

plot (u1); plot(u1, title="Velocity", rescale=True)

Save to file # Save to file

save (p1, sprintf ("p_%3.3d", ++i)); ufile << u1

save (u1, sprintf ("u_%3.3d", i)); pfile << p1

Move to next time step # Move to next time step

u0 = u1; u0.assign(u1)

t += dt t += dt

print "t =", t

end

Hold plot

interactive()

Copyright 2011, The FEniCS Project

4.3 HyperElasticity

This time we compare the code with the c++ version of DOLFIN. The problem
for an elastic material can be expressed as a minimization problem

min
u∈V

Π

Π =

∫
Ω

ψ(u) dx−
∫

Ω

B · udx−
∫
∂Ω

T · uds

4.3. HYPERELASTICITY 33

Figure 4.1: Solution of the HyperElasticity problem

where Π is the total potential energy, ψ is the elastic stored energy, B is a body
force and T is a traction force.

A complete description of the problem is avilable on the Fenics website [18].
The �nal solution will look like in �gure 4.1.

Listing 4.5: UFL code

Function spaces

element = VectorElement("Lagrange", tetrahedron, 1)

Trial and test functions

du = TrialFunction(element) # Incremental displacement

v = TestFunction(element) # Test function

Functions

u = Coefficient(element) # Displacement from previous iteration

B = Coefficient(element) # Body force per unit volume

T = Coefficient(element) # Traction force on the boundary

Kinematics

I = Identity(element.cell().d) # Identity tensor

F = I + grad(u) # Deformation gradient

C = F.T*F # Right Cauchy-Green tensor

Invariants of deformation tensors

Ic = tr(C)

J = det(F)

Elasticity parameters

mu = Constant(tetrahedron)

lmbda = Constant(tetrahedron)

Stored strain energy density (compressible neo-Hookean model)

psi = (mu/2)*(Ic - 3) - mu*ln(J) + (lmbda/2)*(ln(J))**2

34 CHAPTER 4. MORE ADVANCED EXAMPLES

Total potential energy

Pi = psi*dx - inner(B, u)*dx - inner(T, u)*ds

First variation of Pi (directional derivative about u in the direction

of v)

F = derivative(Pi, u, v)

Compute Jacobian of F

J = derivative(F, u, du)

Copyright 2011, The FEniCS Project

Listing 4.6: Fem-fenics Listing 4.7: C++
pkg load fem-fenics msh #include <dolfin.h>

problem = 'HyperElasticity'; #include "HyperElasticity.h"

import_ufl_Problem (problem);

using namespace dolfin;

// Sub domain for clamp at left end

class Left : public SubDomain

{

bool inside(const Array<double>& x, bool

on_boundary) const

{

return (std::abs(x[0]) < DOLFIN_EPS) &&

on_boundary;

}

};

// Sub domain for rotation at right end

class Right : public SubDomain

{

bool inside(const Array<double>& x, bool

on_boundary) const

{

return (std::abs(x[0] - 1.0) < DOLFIN_EPS)

&& on_boundary;

}

};

// Dirichlet boundary condition for clamp at

left end

class Clamp : public Expression

{

public:

4.3. HYPERELASTICITY 35

Clamp() : Expression(3) {}

void eval(Array<double>& values, const

Array<double>& x) const

{

values[0] = 0.0;

values[1] = 0.0;

values[2] = 0.0;

}

};

// Dirichlet boundary condition for rotation

at right end

class Rotation : public Expression

{

public:

Rotation() : Expression(3) {}

void eval(Array<double>& values, const

Array<double>& x) const

{

const double scale = 0.5;

// Center of rotation

const double y0 = 0.5;

const double z0 = 0.5;

// Large angle of rotation (60 degrees)

double theta = 1.04719755;

// New coordinates

double y = y0 + (x[1]-y0)*cos(theta) -

(x[2]-z0)*sin(theta);

double z = z0 + (x[1]-y0)*sin(theta) +

Rotation = @(x,y,z) ... (x[2]-z0)*cos(theta);

[0; ...

0.5*(0.5 + (y - 0.5)*cos(pi/3) - // Rotate at right end

(z-0.5)*sin(pi/3) - y);... values[0] = 0.0;

0.5*(0.5 + (y - 0.5)*sin(pi/3) + values[1] = scale*(y - x[1]);

(z-0.5)*cos(pi/3) - z)]; values[2] = scale*(z - x[2]);

}

};

int main()

{

Create mesh and define function space // Create mesh and define function space

x = y = z = linspace (0, 1, 17); UnitCubeMesh mesh (16, 16, 16);

36 CHAPTER 4. MORE ADVANCED EXAMPLES

mshd = Mesh (msh3m_structured_mesh (x, y, z, HyperElasticity::FunctionSpace V(mesh);

1, 1:6));

V = FunctionSpace (problem, mshd); // Define Dirichlet boundaries

Left left;

Right right;

// Define Dirichlet boundary functions

Clamp c;

Rotation r;

Create Dirichlet boundary conditions // Create Dirichlet boundary conditions

bcl = DirichletBC (V, @(x,y,z) [0; 0; 0], 1); DirichletBC bcl(V, c, left);

bcr = DirichletBC (V, Rotation, 2); DirichletBC bcr(V, r, right);

bcs = {bcl, bcr}; std::vector<const BoundaryCondition*> bcs;

bcs.push_back(&bcl); bcs.push_back(&bcr);

Define source and boundary traction functions // Define source and boundary traction

functions

B = Constant ('B', [0.0; -0.5; 0.0]); Constant B(0.0, -0.5, 0.0);

T = Constant ('T', [0.1; 0.0; 0.0]); Constant T(0.1, 0.0, 0.0);

// Define solution function

Function u(V);

Set material parameters // Set material parameters

E = 10.0; const double E = 10.0;

nu = 0.3; const double nu = 0.3;

mu = Constant ('mu', E./(2*(1+nu))); Constant mu(E/(2*(1 + nu)));

lmbda = Constant ('lmbda', Constant lambda(E*nu/((1 + nu)*(1 - 2*nu)));

E*nu./((1+nu)*(1-2*nu)));

u = Expression ('u', @(x,y,z) [0; 0; 0]);

Create (linear) form defining (nonlinear) // Create (linear) form defining (nonlinear)

variational problem variational problem

L = ResidualForm (problem, V, mu, lmbda, B, T, HyperElasticity::ResidualForm F(V);

u); F.mu = mu; F.lmbda = lambda; F.B = B; F.T =

T; F.u = u;

// Create jacobian dF = F' (for use in

nonlinear solver).

HyperElasticity::JacobianForm J(V, V);

J.mu = mu; J.lmbda = lambda; J.u = u;

Solve nonlinear variational problem F(u; v) // Solve nonlinear variational problem F(u;

= 0 v) = 0

u0 = assemble (L, bcs{:}); solve(F == 0, u, bcs, J);

Create function for the resolution of the NL

problem

function [y, jac] = f (problem, xx, V, bc1,

bc2, B, T, mu, lmbda)

4.4. FICTITIOUS DOMAIN 37

u = Function ('u', V, xx);

a = JacobianForm (problem, V, mu, lmbda, u);

L = ResidualForm (problem, V, mu, lmbda, B,

T, u);

if (nargout == 1)

[y, xx] = assemble (L, xx, bc1, bc2);

elseif (nargout == 2)

[jac, y, xx] = assemble_system (a, L, xx,

bc1, bc2);

endif

endfunction

fs = @(xx) f (problem, xx, V, bcl, bcr, B, T,

mu, lmbda);

[x, fval, info] = fsolve (fs, u0, optimset

("jacobian", "on"));

func = Function ('u', V, x);

Save solution in VTK format // Save solution in VTK format

save (func, 'displacement'); File file("displacement.pvd");

file << u;

Plot solution // Plot solution

plot (func); plot(u);

interactive();

return 0;

}

Copyright 2011, The FEniCS Project

4.4 Fictitious Domain

A penalization method to take into account obstacles in incompressible viscous
�ows

38 CHAPTER 4. MORE ADVANCED EXAMPLES

Appendix A

API reference

A.1 Import problem de�ned with u�

import_u�_BilinearForm

Function File: = import_u�_BilinearForm (myproblem)

Import a BilinearForm from a u� �le.
myproblem is the name of the u� �le where the BilinearForm is

de�ned.
This function creates in the pwd a �le calledmyproblem_BilinearForm.oct.
See also: import_u�_Problem, FunctionSpace, BilinearForm,

LinearForm, Functional.

import_u�_LinearForm

Function File: = import_u�_LinearForm (myproblem)

Import a LinearForm from a u� �le.
myproblem is the name of the u� �le where the LinearForm

is de�ned. This function creates in the pwd a �le called myprob-

lem_LinearForm.oct.
See also: import_u�_Problem, FunctionSpace, BilinearForm,

LinearForm, Functional.

import_u�_Functional

Function File: = import_u�_Functional (myproblem)

Import a Functional from a u� �le.
myproblem is the name of the u� �le where the Functional is

de�ned. This function creates in the pwd a �le called myprob-

lem_Functional.oct.
See also: import_u�_Problem, FunctionSpace, BilinearForm,

LinearForm, Functional.

39

40 APPENDIX A. API REFERENCE

import_u�_FunctionSpace

Function File: = import_u�_FunctionSpace (myproblem)

Import a FunctionSpace from a u� �le.
myproblem is the name of the u� �le where the FunctionSpace

is de�ned. This function creates in the pwd a �le called myprob-

lem_FunctionSpace.oct.
See also: import_u�_Problem, FunctionSpace, BilinearForm,

LinearForm, Functional.

import_u�_Problem

Function File: = import_u�_Problem (myproblem)

Import a Variational Problem from a u� �le.
myproblem is the name of the u� �le where the BilinearForm,

the LinearForm and the FunctionSpace are de�ned.
See also: import_u�_BilinearForm, FunctionSpace, Bilinear-

Form, LinearForm, Functional.

A.2 Problem geometry and FE space

Mesh

Function File: [mesh_out] = Mesh (mesh_in)

Construct a mesh from �le or from (p, e, t) format. The mesh_in
should be either

• a string containing the name of the �le where the mesh is stored
in .xml �le If the �le is not a .xml �le you can try to use the
command dol�n-convert directly from the terminal.

• a PDE-tool like structure with matrix �elds (p,e,t)

The output mesh_out is a representation of the mesh_in which is
compatible with fem-fenics. The easiest way for dealing with meshes
is using the msh pkg.

See also: FunctionSpace.

FunctionSpace

Function File: V = FunctionSpace (myproblem, mesh)

Generate a FunctionSpace on a speci�c mesh.
This function takes as input the name myproblem of the u� �le

where the FunctionSpace is de�ned and the mesh where it has to be
created.

See also: FunctionSpace, SubSpace, import_u�_FunctionSpace.

A.3. PROBLEM VARIABLES 41

SubSpace

Function File: [V1] = SubSpace (V, index)

Extract a SubSpace from an object of type FunctionSpace. The
input arguments are

• V which is a FunctionalSpace

• index is a positive integer number which represents the Sub-
Space which has to be extracted.

The output V1 is the SubSpace needed.
See also: FunctionSpace.

A.3 Problem variables

Constant

Function File: [c] = Constant (name, value)

Create a constatnt object over all the mesh elements with the
value speci�ed.

This function takes as input the name of the Constant that has
to be created and its value, which can be either a scalar or a vector.

See also: Expression, Function.

Expression

Function File: [f] = Expression (name, Function_handle)

Create an object with the value speci�ed as a function handle.
The input parameters are

• name is the name of the coe�cient as it is declared in the u�
�le

• Function_handle is a function handle which specify the expres-
sion to apply for our coe�cient

The output f is an object which contains a representation of the
function

See also: Constant, Function.

Function

Function File: [func] = Function (name, FunctionSpace (or Function),Vector
(or index))

Initialize an object with the values speci�ed in a vector or ex-
tracting a component from a vectorial �eld. This function can be
used in two di�erent ways

42 APPENDIX A. API REFERENCE

• To create a function from a vector. In this case, the arguments
are:

� name is a string representing the name of the function

� FunctionSpace is the fem-fenics function space where the
vector is de�ned

� Vector speci�es the values of the coe�cients for each basic
function of the FunctioSpace

• To extract a scalar �eld from a vectorial one

� name is a string representing the name of the function

� Function is the vector valued Function

� Index contains the index of the scalar �eld to extract.Index
starts from 1.

The output func is an object which contains a representation of the
function Vector which can be plotted or saved or passed as argument
for a variational problem.

See also: Constant, Expression, plot, save.

DirichletBC

Function File: [bc] = DirichletBC (FunctionSpace, Boundary_Label, Func-

tion_handle)

Specify essential boundary condition on a speci�c side. The input
parameters are

• FunctionSpace is the fem-fenics space where we want to apply
the BC

• Function_handle is a function handle which contains the ex-
pression that we want to apply as a BC. If we have a Vector
�eld, we can just use a vector of function handles: Function

handle = [@(x, y) f1, @(x, y) f2, ...]

• Boundary_Label is an Array which contains the label(s) of the
side(s) where the BC has to be applied.

The output bc is an object which contains the boundary conditions
See also: Mesh, FunctionSpace.

A.4 De�nition of the abstract Variational prob-

lem

BilinearForm

Function File: [a] = BilinearForm (my_problem, U, V, coe�cient_1, coe�-

cient_2,...)

Construct a BilinearForm previously imported from u�.
The compulsory arguments are:

A.4. DEFINITION OF THE ABSTRACT VARIATIONAL PROBLEM 43

• my_problem the name of the problem to solve.

• the FunctionSpace U and V where the problem is de�ned.

The optional arguments are the coe�cient_1, coe�cient_2 which
specify the parameters for the BilinearForm as stated in the u� �le.
They can be either a Constant, a Function or an Expression.

See also: import_u�_BilinearForm, import_u�_Problem, Func-
tionSpace, LinearForm, ResidualForm.

LinearForm

Function File: [L]= LinearForm (my_problem, U, coe�cient_1, coe�cient_2,...)

Construct a Functional previously imported from a u� �le.

The compulsory arguments are:

• my_problem the name of the problem to solve.

• the FunctionSpace U where the problem is de�ned.

The optional arguments are the coe�cient_1, coe�cient_2 which
specify the parameters for the LinearForm with the same name which
was used in the u� �le. They can be either a Constant, a Function
or an Expression.

See also: import_u�_LinearForm, import_u�_Problem, Bi-
linearForm, ResidualForm, BilinearForm.

ResidualForm

Function File: [L]= LinearForm (my_problem, U, coe�cient_1, coe�cient_2,...)

Construct a ResidualForm previously imported from a u� �le
with the function import_u�_LinearForm.

The compulsory arguments are:

• my_problem the name of the problem to solve.

• the FunctionSpace U where the problem is de�ned.

The optional arguments are the coe�cient_1, coe�cient_2 which
specify the parameters for the ResidualForm with the same name
which was used in the u� �le. They can be either a Constant, a
Function or an Expression.

See also: import_u�_LinearForm, import_u�_Problem, Bi-
linearForm, ResidualForm, BilinearForm.

JacobianForm

Function File: [J] = Functional (my_problem, U, V, coe�cient_1, coe�-

cient_2,...)

44 APPENDIX A. API REFERENCE

Construct a JacobianForm previously imported from a u� �le
with the function import_u�_BilinearForm.

The compulsory arguments are:

• my_problem the name of the problem to solve.

• the FunctionSpace U and V where the problem is de�ned.

The optional arguments are the coe�cient_1, coe�cient_2 which
specify the parameters for the JacobianForm with the same name
which was used in the u� �le. They can be either a Constant, a
Function or an Expression.

See also: import_u�_BilinearForm, LinearForm, ResidualForm,
BilinearForm.

Functional

Function File: [L]= Functional (my_problem, U, coe�cient_1, coe�cient_2,...)

Construct a Functional previously imported from a u� �le.
The compulsory arguments are:

• my_problem the name of the problem to solve.

• the FunctionSpace U where the problem is de�ned.

The optional arguments are the coe�cient_1, coe�cient_2 which
specify the parameters for the Functional with the same name which
was used in the u� �le. They can be either a Constant, a Function
or an Expression.

See also: import_u�_Functional, LinearForm, ResidualForm,
BilinearForm.

A.5 Creation of the discretized problem

assemble

Function File: [A], [x (Optional)] = assemble (form_a, DirichletBC)

Construct the discretization of a Form and apply essential BC.
The input arguments are

• form_a which is the form to assemble. It can be a form of rank
2 (BilinearForm or JacobianForm), a form of rank 1 (Linear-
Form or ResidualForm) or a form of rank 0 (Functional).

• DirichletBC represents the optional BC applied to the system.

The output A is a discretized representation of the form_a:

• A is a sparse Matrix if form_a is a bilinear form

• A is a Vector if form_a is a linear form

• A is a Double if form_a is a functional

A.6. POST PROCESSING 45

If a boundary condition has to be applied to a vector for a nonlinear
problem then it should be provided as 2nd argument and it will be
given back as the second output argument. For an example of this
situation, please refer to the HyperElasticity example.

See also: BilinearForm, LinearForm, ResidualForm, Jacobian-
Form, Functional.

assemble_system

Function File: [A], [b], [x (Optional)] = assemble_system (form_a, form_L,
DirichletBC)

Construct the discretization of a system and apply essential BC.
The input arguments are

• form_a which is the BilinearForm to assemble.

• form_L which is the LinearForm to assemble.

• DirichletBC represents the optional BC applied to the system.

The output A is a matrix representing the form_a while b represents
form_L. If boundary conditions have to be applied to a vector for a
nonlinear problem then it should be provide as 3rd argument and it
will be given back as the 3rd output argument. For an example of
this situation, please refer to the HyperElasticity example.

See also: BilinearForm, LinearForm, ResidualForm, Jacobian-
Form, Functional.

A.6 Post processing

@function/save

Function File: fem_save (Function, Name)

Save a function in vtu format. The input parameters are

• Function is the function that you want to save

• Name is a string for the output name

The output is a �le in format .vtu

See also: plot, Function.

@function/plot

Function File: plot (Function)

Plot a Function.

See also: Function, Save.

46 APPENDIX A. API REFERENCE

@mesh/plot

Function File: plot (Mesh, Nodal_Values(OPTIONAL))

Plot a Mesh. The input parameter is the Mesh and optionally
also a vector representing the values of a function at each node.

See also: Mesh, save.

@function/feval

Function File: [value] = feval (function_name, Coordinate)

Evaluate a function at a speci�c point of the domain and return
the value. The input parameters are the function and the point
where it has to be evaluated.

See also: Function.

Appendix B

Autoconf and Automake

In this section we want to discuss how we can write a con�g.ac and a Make�le.in
�les which:

• check if a program is available and stop if it is not

• check if a header �le is available and issue a warning if not, but go ahead
with the compilation

To reach this goal, we need two components:

con�gure.ac Is a �le which checks whether the program/header is available
or not and sets consequently the values of some variables.

1 # Checks if the program mkoctfile is available and sets the variable

HAVE_MKOCTFILE consequently

2 AC_CHECK_PROG([HAVE_MKOCTFILE], [mkoctfile], [yes], [no])

3 # if mkoctfile is not available, it issues an error and stops the

compilation

4 if [test $HAVE_MKOCTFILE = "no"]; then

5 AC_MSG_ERROR([mkoctfile required to install $PACKAGE_NAME])

6 fi

7

8 #Checks if the header dolfin.h is available; if it is available, the

value of the ac_dolfin_cpp_flags is substituted with

-DHAVE_DOLFIN_H, otherwise it is left empty and a warning

message is printed

9 AC_CHECK_HEADER([dolfin.h],

10 [AC_SUBST(ac_dolfin_cpp_flags,-DHAVE_DOLFIN_H)

AC_SUBST(ac_dolfin_ld_flags,-ldolfin)],

11 [AC_MSG_WARN([dolfin headers could not be found, some

functionalities will be disabled, don't worry your package

will still be working, though.])]).

12

13 # It generates the Makefile, using the template described below

14 AC_CONFIG_FILES([Makefile])

47

48 APPENDIX B. AUTOCONF AND AUTOMAKE

Make�le.ac This �le is a template for the Make�le, which will be automati-
cally generated when the con�gure.ac �le is executed. The values of the variable
ac_dolfin_cpp_flags and ac_dolfin_ld_flags are substituted with the re-
sults obtained above:

1 CPPFLAGS += @ac_dolfin_cpp_flags@

2 LDFLAGS += @ac_dolfin_ld_flags@

In this way, if dol�n.h is available, CPPFLAGS contains also the �ag -
DHAVE_DOLFIN_H.

program.cc Our .cc program, should thus include the header dol�n.h only if
-DHAVE_DOLFIN_H is de�ned at compilation time. For example

1 #ifdef HAVE_DOLFIN_H

2 #include <dolfin.h>

3 #endif

4 int main ()

5 {

6

7 #ifndef HAVE_DOLFIN_H

8 error("program: the program was built without support for

dolfin");

9 #else

10 /* Body of your function */

11 #endif

12 return 0;

13 }

Warning If in the Make�le.in you write something like

1 HAVE_DOLFIN_H = @HAVE_DOLFIN_H@

2 ifdef HAVE_DOLFIN_H

3 CPPFLAGS += -DHAVE_DOLFIN_H

4 LIBS += -ldolfin

5 endif

it doesn't work because the variable HAVE_DOLFIN_H seems to be always de�ned,
even if the header is not available.

Bibliography

[1] http://www.gnu.org/software/octave/download.html.

[2] http://fenicsproject.org/download/.

[3] http://fenicsproject.org/documentation/ufl/1.2.0/user/user_
manual.html.

[4] http://octave.sourceforge.net/msh/index.html.

[5] http://octave.sourceforge.net/fpl/index.html.

[6] http://octave.sourceforge.net/secs1d/index.html.

[7] http://octave.sourceforge.net/bim/index.html.

[8] http://jordi.platinum.linux.pl/octave/what-is-octave.pdf.

[9] Luca Formaggia. Advanced programming for scienti�c computing. lecture
title: Smart pointers. 2012.

[10] http://fenicsproject.org/documentation/dolfin/1.2.0/cpp/
programmers-reference/mesh/MeshFunction.html.

[11] http://fenicsproject.org/documentation/dolfin/1.2.0/cpp/
programmers-reference/mesh/MeshValueCollection.html.

[12] http://fenicsproject.org/documentation/dolfin/1.2.0/cpp/
programmers-reference/mesh/MeshDomain.html.

[13] http://fenicsproject.org/documentation/dolfin/1.2.0/cpp/
programmers-reference/mesh/MeshData.html.

[14] http://gedeone-gsoc.blogspot.co.uk/2013/06/update-4.html.

[15] Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated solution

of di�erential equations by the �nite element method: The fenics book, vol-
ume 84. Springer, 2012.

[16] http://fenicsproject.org/documentation/dolfin/1.2.0/python/
demo/pde/mixed-poisson/python/documentation.html.

[17] http://fenicsproject.org/documentation/dolfin/1.2.0/python/
demo/pde/navier-stokes/python/documentation.html.

[18] http://fenicsproject.org/documentation/dolfin/1.2.0/python/
demo/pde/hyperelasticity/python/documentation.html.

49

http://www.gnu.org/software/octave/download.html
http://fenicsproject.org/download/
http://fenicsproject.org/documentation/ufl/1.2.0/user/user_manual.html
http://fenicsproject.org/documentation/ufl/1.2.0/user/user_manual.html
http://octave.sourceforge.net/msh/index.html
http://octave.sourceforge.net/fpl/index.html
http://octave.sourceforge.net/secs1d/index.html
http://octave.sourceforge.net/bim/index.html
http://jordi.platinum.linux.pl/octave/what-is-octave.pdf
http://fenicsproject.org/documentation/dolfin/1.2.0/cpp/programmers-reference/mesh/MeshFunction.html
http://fenicsproject.org/documentation/dolfin/1.2.0/cpp/programmers-reference/mesh/MeshFunction.html
http://fenicsproject.org/documentation/dolfin/1.2.0/cpp/programmers-reference/mesh/MeshValueCollection.html
http://fenicsproject.org/documentation/dolfin/1.2.0/cpp/programmers-reference/mesh/MeshValueCollection.html
http://fenicsproject.org/documentation/dolfin/1.2.0/cpp/programmers-reference/mesh/MeshDomain.html
http://fenicsproject.org/documentation/dolfin/1.2.0/cpp/programmers-reference/mesh/MeshDomain.html
http://fenicsproject.org/documentation/dolfin/1.2.0/cpp/programmers-reference/mesh/MeshData.html
http://fenicsproject.org/documentation/dolfin/1.2.0/cpp/programmers-reference/mesh/MeshData.html
http://gedeone-gsoc.blogspot.co.uk/2013/06/update-4.html
http://fenicsproject.org/documentation/dolfin/1.2.0/python/demo/pde/mixed-poisson/python/documentation.html
http://fenicsproject.org/documentation/dolfin/1.2.0/python/demo/pde/mixed-poisson/python/documentation.html
http://fenicsproject.org/documentation/dolfin/1.2.0/python/demo/pde/navier-stokes/python/documentation.html
http://fenicsproject.org/documentation/dolfin/1.2.0/python/demo/pde/navier-stokes/python/documentation.html
http://fenicsproject.org/documentation/dolfin/1.2.0/python/demo/pde/hyperelasticity/python/documentation.html
http://fenicsproject.org/documentation/dolfin/1.2.0/python/demo/pde/hyperelasticity/python/documentation.html

	Introduction
	Introduction to Fem-fenics
	Installation
	General layout and first example

	Implementation
	General layout of a class
	Shared pointer
	The mesh class
	The functionspace class

	General layout of a function
	Wrappers to UFL
	Wrappers to DOLFIN
	Wrapper to FEniCS
	Code on the fly

	More Advanced Examples
	Mixed Formulation for the Poisson Equation
	Incompressible Navier-Stokes equation
	HyperElasticity
	Fictitious Domain

	API reference
	Import problem defined with ufl
	Problem geometry and FE space
	Problem variables
	Definition of the abstract Variational problem
	Creation of the discretized problem
	Post processing

	Autoconf and Automake

