diff main/splines/dgtsv.f @ 0:6b33357c7561 octave-forge

Initial revision
author pkienzle
date Wed, 10 Oct 2001 19:54:49 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/main/splines/dgtsv.f	Wed Oct 10 19:54:49 2001 +0000
@@ -0,0 +1,263 @@
+      SUBROUTINE DGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
+*
+*  -- LAPACK routine (version 3.0) --
+*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+*     Courant Institute, Argonne National Lab, and Rice University
+*     October 31, 1999
+*
+*     .. Scalar Arguments ..
+      INTEGER            INFO, LDB, N, NRHS
+*     ..
+*     .. Array Arguments ..
+      DOUBLE PRECISION   B( LDB, * ), D( * ), DL( * ), DU( * )
+*     ..
+*
+*  Purpose
+*  =======
+*
+*  DGTSV  solves the equation
+*
+*     A*X = B,
+*
+*  where A is an n by n tridiagonal matrix, by Gaussian elimination with
+*  partial pivoting.
+*
+*  Note that the equation  A'*X = B  may be solved by interchanging the
+*  order of the arguments DU and DL.
+*
+*  Arguments
+*  =========
+*
+*  N       (input) INTEGER
+*          The order of the matrix A.  N >= 0.
+*
+*  NRHS    (input) INTEGER
+*          The number of right hand sides, i.e., the number of columns
+*          of the matrix B.  NRHS >= 0.
+*
+*  DL      (input/output) DOUBLE PRECISION array, dimension (N-1)
+*          On entry, DL must contain the (n-1) sub-diagonal elements of
+*          A.
+*
+*          On exit, DL is overwritten by the (n-2) elements of the
+*          second super-diagonal of the upper triangular matrix U from
+*          the LU factorization of A, in DL(1), ..., DL(n-2).
+*
+*  D       (input/output) DOUBLE PRECISION array, dimension (N)
+*          On entry, D must contain the diagonal elements of A.
+*
+*          On exit, D is overwritten by the n diagonal elements of U.
+*
+*  DU      (input/output) DOUBLE PRECISION array, dimension (N-1)
+*          On entry, DU must contain the (n-1) super-diagonal elements
+*          of A.
+*
+*          On exit, DU is overwritten by the (n-1) elements of the first
+*          super-diagonal of U.
+*
+*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
+*          On entry, the N by NRHS matrix of right hand side matrix B.
+*          On exit, if INFO = 0, the N by NRHS solution matrix X.
+*
+*  LDB     (input) INTEGER
+*          The leading dimension of the array B.  LDB >= max(1,N).
+*
+*  INFO    (output) INTEGER
+*          = 0: successful exit
+*          < 0: if INFO = -i, the i-th argument had an illegal value
+*          > 0: if INFO = i, U(i,i) is exactly zero, and the solution
+*               has not been computed.  The factorization has not been
+*               completed unless i = N.
+*
+*  =====================================================================
+*
+*     .. Parameters ..
+      DOUBLE PRECISION   ZERO
+      PARAMETER          ( ZERO = 0.0D+0 )
+*     ..
+*     .. Local Scalars ..
+      INTEGER            I, J
+      DOUBLE PRECISION   FACT, TEMP
+*     ..
+*     .. Intrinsic Functions ..
+      INTRINSIC          ABS, MAX
+*     ..
+*     .. External Subroutines ..
+      EXTERNAL           XERBLA
+*     ..
+*     .. Executable Statements ..
+*
+      INFO = 0
+      IF( N.LT.0 ) THEN
+         INFO = -1
+      ELSE IF( NRHS.LT.0 ) THEN
+         INFO = -2
+      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+         INFO = -7
+      END IF
+      IF( INFO.NE.0 ) THEN
+         CALL XERBLA( 'DGTSV ', -INFO )
+         RETURN
+      END IF
+*
+      IF( N.EQ.0 )
+     $   RETURN
+*
+      IF( NRHS.EQ.1 ) THEN
+         DO 10 I = 1, N - 2
+            IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
+*
+*              No row interchange required
+*
+               IF( D( I ).NE.ZERO ) THEN
+                  FACT = DL( I ) / D( I )
+                  D( I+1 ) = D( I+1 ) - FACT*DU( I )
+                  B( I+1, 1 ) = B( I+1, 1 ) - FACT*B( I, 1 )
+               ELSE
+                  INFO = I
+                  RETURN
+               END IF
+               DL( I ) = ZERO
+            ELSE
+*
+*              Interchange rows I and I+1
+*
+               FACT = D( I ) / DL( I )
+               D( I ) = DL( I )
+               TEMP = D( I+1 )
+               D( I+1 ) = DU( I ) - FACT*TEMP
+               DL( I ) = DU( I+1 )
+               DU( I+1 ) = -FACT*DL( I )
+               DU( I ) = TEMP
+               TEMP = B( I, 1 )
+               B( I, 1 ) = B( I+1, 1 )
+               B( I+1, 1 ) = TEMP - FACT*B( I+1, 1 )
+            END IF
+   10    CONTINUE
+         IF( N.GT.1 ) THEN
+            I = N - 1
+            IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
+               IF( D( I ).NE.ZERO ) THEN
+                  FACT = DL( I ) / D( I )
+                  D( I+1 ) = D( I+1 ) - FACT*DU( I )
+                  B( I+1, 1 ) = B( I+1, 1 ) - FACT*B( I, 1 )
+               ELSE
+                  INFO = I
+                  RETURN
+               END IF
+            ELSE
+               FACT = D( I ) / DL( I )
+               D( I ) = DL( I )
+               TEMP = D( I+1 )
+               D( I+1 ) = DU( I ) - FACT*TEMP
+               DU( I ) = TEMP
+               TEMP = B( I, 1 )
+               B( I, 1 ) = B( I+1, 1 )
+               B( I+1, 1 ) = TEMP - FACT*B( I+1, 1 )
+            END IF
+         END IF
+         IF( D( N ).EQ.ZERO ) THEN
+            INFO = N
+            RETURN
+         END IF
+      ELSE
+         DO 40 I = 1, N - 2
+            IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
+*
+*              No row interchange required
+*
+               IF( D( I ).NE.ZERO ) THEN
+                  FACT = DL( I ) / D( I )
+                  D( I+1 ) = D( I+1 ) - FACT*DU( I )
+                  DO 20 J = 1, NRHS
+                     B( I+1, J ) = B( I+1, J ) - FACT*B( I, J )
+   20             CONTINUE
+               ELSE
+                  INFO = I
+                  RETURN
+               END IF
+               DL( I ) = ZERO
+            ELSE
+*
+*              Interchange rows I and I+1
+*
+               FACT = D( I ) / DL( I )
+               D( I ) = DL( I )
+               TEMP = D( I+1 )
+               D( I+1 ) = DU( I ) - FACT*TEMP
+               DL( I ) = DU( I+1 )
+               DU( I+1 ) = -FACT*DL( I )
+               DU( I ) = TEMP
+               DO 30 J = 1, NRHS
+                  TEMP = B( I, J )
+                  B( I, J ) = B( I+1, J )
+                  B( I+1, J ) = TEMP - FACT*B( I+1, J )
+   30          CONTINUE
+            END IF
+   40    CONTINUE
+         IF( N.GT.1 ) THEN
+            I = N - 1
+            IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
+               IF( D( I ).NE.ZERO ) THEN
+                  FACT = DL( I ) / D( I )
+                  D( I+1 ) = D( I+1 ) - FACT*DU( I )
+                  DO 50 J = 1, NRHS
+                     B( I+1, J ) = B( I+1, J ) - FACT*B( I, J )
+   50             CONTINUE
+               ELSE
+                  INFO = I
+                  RETURN
+               END IF
+            ELSE
+               FACT = D( I ) / DL( I )
+               D( I ) = DL( I )
+               TEMP = D( I+1 )
+               D( I+1 ) = DU( I ) - FACT*TEMP
+               DU( I ) = TEMP
+               DO 60 J = 1, NRHS
+                  TEMP = B( I, J )
+                  B( I, J ) = B( I+1, J )
+                  B( I+1, J ) = TEMP - FACT*B( I+1, J )
+   60          CONTINUE
+            END IF
+         END IF
+         IF( D( N ).EQ.ZERO ) THEN
+            INFO = N
+            RETURN
+         END IF
+      END IF
+*
+*     Back solve with the matrix U from the factorization.
+*
+      IF( NRHS.LE.2 ) THEN
+         J = 1
+   70    CONTINUE
+         B( N, J ) = B( N, J ) / D( N )
+         IF( N.GT.1 )
+     $      B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) / D( N-1 )
+         DO 80 I = N - 2, 1, -1
+            B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DL( I )*
+     $                  B( I+2, J ) ) / D( I )
+   80    CONTINUE
+         IF( J.LT.NRHS ) THEN
+            J = J + 1
+            GO TO 70
+         END IF
+      ELSE
+         DO 100 J = 1, NRHS
+            B( N, J ) = B( N, J ) / D( N )
+            IF( N.GT.1 )
+     $         B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
+     $                       D( N-1 )
+            DO 90 I = N - 2, 1, -1
+               B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DL( I )*
+     $                     B( I+2, J ) ) / D( I )
+   90       CONTINUE
+  100    CONTINUE
+      END IF
+*
+      RETURN
+*
+*     End of DGTSV
+*
+      END