view main/optim/inst/fzero.m @ 2728:2b40ad4523fa octave-forge

function_handle and not function handle
author adb014
date Thu, 19 Oct 2006 17:42:52 +0000
parents 24d6a5cdedfe
children 73fa4496fb07
line wrap: on
line source

## Copyright (C) 2004 �ukasz Bodzon <lllopezzz@o2.pl>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
##
## REVISION HISTORY
##
## 2004-07-20, Piotr Krzyzanowski, <piotr.krzyzanowski@mimuw.edu.pl>:
## Options parameter and fall back to fsolve if only scalar APPROX argument
## supplied
##
## 2004-07-01, Lukasz Bodzon:
## Replaced f(a)*f(b) < 0 criterion by a more robust
## sign(f(a)) ~= sign(f(b))
##
## 2004-06-18, Lukasz Bodzon:
## Original implementation of Brent's method of finding a zero of a scalar
## function

## -*- texinfo -*-
## @deftypefn {Function File} {} [X, FX, INFO] = fzero (FCN, APPROX, OPTIONS)
##
## Given FCN, the name of a function of the form `F (X)', and an initial
## approximation APPROX, `fzero' solves the scalar nonlinear equation such that
## `F(X) == 0'. Depending on APPROX, `fzero' uses different algorithms to solve
## the problem: either the Brent's method or the Powell's method of `fsolve'.
##
## @deftypefnx {Function File} {} [X, FX, INFO] = fzero (FCN, APPROX, OPTIONS,P1,P2,...)
##
## Call FCN with FCN(X,P1,P2,...).
##
## @table @asis
## @item INPUT ARGUMENTS
## @end table
##
## @table @asis
## @item APPROX can be a vector with two components, 
## @example
## A = APPROX(1) and B = APPROX(2),
## @end example
## which localizes the zero of F, that is, it is assumed that X lies between A and
## B. If APPROX is a scalar, it is treated as an initial guess for X.
##
## If APPROX is a vector of length 2 and F takes different signs at A and B,
## F(A)*F(B) < 0, then the Brent's zero finding algorithm [1] is used with error
## tolerance criterion 
## @example
## reltol*|X|+abstol (see OPTIONS). 
## @end example
## This algorithm combines
## superlinear convergence (for sufficiently regular functions) with the
## robustness of bisection.
##
## Whether F has identical signs at A and B, or APPROX is a single scalar value,
## then `fzero' falls back to another method and `fsolve(FCN, X0)' is called, with
## the starting value X0 equal to (A+B)/2 or APPROX, respectively. Only absolute
## residual tolerance, abstol, is used then, due to the limitations of the `fsolve_options'
## function. See OPTIONS and `help fsolve' for details.
##
## @item OPTIONS is a structure, with the following fields:
##
## @table @asis
## @item 'abstol' - absolute (error for Brent's or residual for fsolve)
## tolerance. Default = 1e-6.
##
## @item 'reltol' - relative error tolerance (only Brent's method). Default = 1e-6.
##
## @item 'prl' - print level, how much diagnostics to print. Default = 0, no
## diagnostics output.
## @end table
##
## If OPTIONS argument is omitted, or a specific field is not present in the
## OPTIONS structure, default values will be used.
## @end table
##
## @table @asis
## @item OUTPUT ARGUMENTS
## @end table
##
## @table @asis
## @item The computed approximation to the zero of FCN is returned in X. FX is then equal
## to FCN(X). If the iteration converged, INFO == 1. If Brent's method is used,
## and the function seems discontinuous, INFO is set to -5. If fsolve is used,
## INFO is determined by its convergence.
## @end table
##
## @table @asis
## @item EXAMPLES
## @end table
##
## @example
## fzero('sin',[-2 1]) will use Brent's method to find the solution to
## sin(x) = 0 in the interval [-2, 1]
## @end example
##
## @example
## [x, fx, info] = fzero('sin',-2) will use fsolve to find a solution to
## sin(x)=0 near -2.
## @end example
##
## @example
## options.abstol = 1e-2; fzero('sin',-2, options) will use fsolve to
## find a solution to sin(x)=0 near -2 with the absolute tolerance 1e-2.
## @end example
##
## @table @asis
## @item REFERENCES
## [1] Brent, R. P. "Algorithms for minimization without derivatives" (1971).
## @end table
## @end deftypefn
## @seealso{fsolve}

function [Z, FZ, INFO] =fzero(Func,bracket,options,varargin)

	if (nargin < 2) 
	  usage("[x, fx, info] = fzero(@fcn, [lo,hi]|start, options)"); 
	endif

	if !ischar(Func) && !isa(Func,"function_handle") && !isa(Func,"inline function")
	  error("fzero expects a function as the first argument");
	endif
	bracket = bracket(:);
	if all(length(bracket)!=[1,2])
	  error("fzero expects an initial value or a range");
	endif


	set_default_options = false;
	if (nargin >= 2) 			% check for the options
		if (nargin == 2)
			set_default_options = true;
			options = [];
		 else 				% nargin > 2
			if ~isstruct(options)
				if ~isempty(options)  % empty indicates default chosen
					warning('Options incorrect. Setting default values.');
				end
				warning('Options incorrect. Setting default values.');
				set_default_options = true;
			end
		end
	end

	if ~isfield(options,'abstol')
		options.abstol = 1e-6;
	end
	if ~isfield(options,'reltol')
		options.reltol = 1e-6;
	end
	% if ~isfield(options,'maxit')
	% options.maxit = 100;
	% end
	if ~isfield(options,'prl')
		options.prl = 0; 		% no diagnostics output
	end

	fcount = 0; 				% counts function evaluations
	if (length(bracket) > 1)
		a = bracket(1); b = bracket(2);
		use_brent = true;
	 else
		b = bracket;
		use_brent = false;
	end


	if (use_brent)

		fa=feval(Func,a,varargin{:}); fcount=fcount+1;
		fb=feval(Func,b,varargin{:}); fcount=fcount+1;

		BOO=true;
		tol=options.reltol*abs(b)+options.abstol;

		% check if one of the endpoints is the solution
		if (fa == 0.0)
			BOO = false;
			c = b = a;
			fc = fb = fa;
		end
		if (fb == 0.0)
			BOO = false;
			c = a = b;
			fc = fa = fb;
		end

		if ((sign(fa) == sign(fb)) & BOO)
			warning ("fzero: equal signs at both ends of the interval.\n\
			Using fsolve('%s',%g) instead", Func, 0.5*(a+b));
			use_brent = false;
			b = 0.5*(a+b);
		endif
	end



	if (use_brent) 				% it is reasonable to call Brent's method
		if options.prl > 0
			fprintf(stderr,"============================\n");
			fprintf(stderr,"fzero: using Brent's method\n");
			fprintf(stderr,"============================\n");
		end
		c=a;
		fc=fa;
		d=b-a;
		e=d;

		while (BOO == true) 		% convergence check

			if (sign(fb) == sign(fc)) % rename a, b, c and adjust bounding interval
				c=a;
				fc=fa;
				d=b-a;
				e=d;
			endif,

			## We are preventing overflow and division by zero
			## while computing the new approximation by
			## linear interpolation.
			## After this step, we lose the chance for using
			## inverse quadratic interpolation (a==c).

			if (abs(fc) < abs(fb))
				a=b;
				b=c;
				c=a;
				fa=fb;
				fb=fc;
				fc=fa;
			endif,

			tol=options.reltol*abs(b)+options.abstol;
			m=0.5*(c-b);
			if options.prl > 0
				fprintf(stderr,'fzero: [%d feval] X = %8.4e\n', fcount, b);
				if options.prl > 1
					fprintf(stderr,'fzero: m = %8.4e e = %8.4e [tol = %8.4e]\n', m, e, tol);
				end
			end

			if (abs(m) > tol & fb != 0)

			## The second condition in following if-instruction
			## prevents overflow and division by zero
			## while computing the new approximation by
			## inverse quadratic interpolation.

				if (abs(e) < tol | abs(fa) <= abs(fb))
					d=m; 			% bisection
					e=m;

				 else
					s=fb/fa;

					if (a == c) 		% attempt linear interpolation
						p=2*m*s; 	%  (the secant method)
						q=1-s;

					 else 			% attempt inverse quadratic interpolation
						q=fa/fc;
						r=fb/fc;
						p=s*(2*m*q*(q-r)-(b-a)*(r-1));
						q=(q-1)*(r-1)*(s-1);
					endif,

					if (p > 0) 		% fit signs
						q=-q; 		%  to the sign of (c-b)

					 else
						p=-p;
					endif,

					s=e;
					e=d;

					if (2*p < 3*m*q-abs(tol*q) & p < abs(0.5*s*q))
						d=p/q; 		% accept interpolation

					 else 			% interpolation failed;
						d=m; 		%  take the bisection step
						e=m;
					endif,

				endif,

				a=b;
				fa=fb;

				if (abs(d) > tol)	 	% the step we take is never shorter
					b=b+d; 			%  than tol

				 else

					if (m > 0) 		% fit signs
						b=b+tol; 	%  to the sign of (c-b)

				 	 else
						b=b-tol;
					endif,

				endif,

				fb=feval(Func,b,varargin{:}); fcount=fcount+1;

		 	 else
				BOO=false;
			endif,

		endwhile,
		Z=b;
		FZ = fb;
		if abs(FZ) > 100*tol 	% large value of the residual may indicate a discontinuity point
			INFO = -5;
	 	 else
			INFO = 1;
		end
		%
		% TODO: test if Z may be a singular point of F (ie F is discontinuous at Z
		% Then return INFO = -5
		%
		if (options.prl > 0 )
			fprintf(stderr,"\nfzero: summary\n");
			switch(INFO)
		 	 case 1
				MSG = "Solution converged within specified tolerance";
		 	 case -5
				MSG = strcat("Probably a discontinuity/singularity point of F()\n encountered close to X = ", sprintf('%8.4e',Z),...
				".\n Value of the residual at X, |F(X)| = ",...
				sprintf('%8.4e',abs(FZ)), ...
				".\n Another possibility is that you use too large tolerance parameters",...
				".\n Currently TOL = ", sprintf('%8.4e', tol), ...
				".\n Try fzero with smaller tolerance values");
		 	 otherwise
				MSG = "Something strange happened"
			endswitch
			fprintf(stderr,' %s.\n', MSG);
			fprintf(stderr,' %d function evaluations.\n', fcount);
		end

	 else 				% fall back to fsolve
		if options.prl > 0
			fprintf(stderr,"============================\n");
			fprintf(stderr,"fzero: using fsolve\n");
			fprintf(stderr,"============================\n");
		end
		% check for zeros in APPROX
		fb=feval(Func,b,varargin{:});
		fcount=fcount+1;
		tol_save = fsolve_options('tolerance');
		fsolve_options("tolerance",options.abstol);
		[Z, INFO, MSG] = fsolve(Func, b);
		fsolve_options('tolerance',tol_save);
		FZ = feval(Func,Z,varargin{:});
		if options.prl > 0
			fprintf(stderr,"\nfzero: summary\n");
			fprintf(stderr,' %s.\n', MSG);
		end
	end
endfunction;

%!## usage and error testing
%!##	the Brent's method
%!test 
%! options.abstol=0;
%! assert (fzero('sin',[-1,2],options), 0)
%!test 
%! options.abstol=0.01;
%! options.reltol=1e-3;
%! assert (fzero('tan',[-0.5,1.41],options), 0, 0.01)
%!test 
%! options.abstol=1e-3;
%! assert (fzero('atan',[-(10^300),10^290],options), 0, 1e-3)
%!test
%! testfun=inline('(x-1)^3','x');
%! options.abstol=0;
%! options.reltol=eps;
%! assert (fzero(testfun,[0,3],options), 1, -eps)
%!test
%! testfun=inline('(x-1)^3+y+z','x','y','z');
%! options.abstol=0;
%! options.reltol=eps;
%! assert (fzero(testfun,[-3,0],options,22,5), -2, eps)
%!test
%! testfun=inline('x.^2-100','x');
%! options.abstol=1e-4;
%! assert (fzero(testfun,[-9,300],options),10,1e-4)
%!##	`fsolve'
%!test 
%! options.abstol=0.01;
%! assert (fzero('tan',-0.5,options), 0, 0.01)
%!test 
%! options.abstol=0;
%! assert (fzero('sin',[0.5,1],options), 0)
%!
%!demo
%! bracket=[-1,1.2]; 
%! [X,FX,MSG]=fzero('tan',bracket)
%!demo
%! bracket=1; 	# `fsolve' will be used
%! [X,FX,MSG]=fzero('sin',bracket)
%!demo
%! bracket=[-1,2]; 
%! options.abstol=0; options.prl=1; 
%! X=fzero('sin',bracket,options)
%!demo
%! bracket=[0.5,1]; 
%! options.abstol=0; options.reltol=eps; options.prl=1; 
%! fzero('sin',bracket,options)
%!demo
%! demofun=inline('2*x.*exp(-4)+1 - 2*exp(-4*x)','x'); 
%! bracket=[0, 1]; 
%! options.abstol=1e-14; options.reltol=eps; options.prl=2;
%! [X,FX]=fzero(demofun,bracket,options)
%!demo
%! demofun=inline('x^51','x');
%! bracket=[-12,10];
%! # too large tolerance parameters
%! options.abstol=1; options.reltol=1; options.prl=1;
%! [X,FX]=fzero(demofun,bracket,options)
%!demo
%! # points of discontinuity inside the bracket
%! demofun=inline('0.5*(sign(x-1e-7)+sign(x+1e-7))','x');
%! bracket=[-5,7];
%! options.prl=1;
%! [X,FX]=fzero(demofun,bracket,options)
%!demo
%! demofun=inline('2*x*exp(-x^2)','x');
%! bracket=1;
%! options.abstol=1e-14; options.prl=2;
%! [X,FX]=fzero(demofun,bracket,options)
%!demo
%! demofun=inline('2*x.*exp(-x.^2)','x');
%! bracket=[-10,1];
%! options.abstol=1e-14; options.prl=2;
%! [X,FX]=fzero(demofun,bracket,options)