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1 Basic Properties
Definition 1.1 (Quaternion). Quaternion is a R

4 vector of the form

q =









q1

q2

q3

q4









. (1)

what makes quaternions different from ordinary 4-dimensional vectors are the al-
gebraic properties to be defined in this section. In order to write the definitions of
the basic algebraic operations of quaternions in compact form the components are
often divided to scalar part s and vector part v ∈ R

3 as follows:

q =

(

s
v

)

. (2)

The quaternion q can be also considered as a 4-component extended complex num-
ber of the form

q = q1 + q2 i + q3 j + q4 k, (3)

where the imaginary components i, j, k have the computation rules

i ∗ i = −1 i ∗ j = k j ∗ i = −k etc. (4)

However, in this document the vector presentation is preferred to the representation
as extended complex number.

Definition 1.2 (Quaternion conjugate). The conjugate q∗ of quaternion q is de-
fined as

q∗ =









q1

−q2

−q3

−q4









(5)

1



Definition 1.3 (Quaternion sum). The sum of quaternions is the same as the vec-
tor sum:

q + p =









q1 + p1

q2 + p2

q3 + p3

q4 + p4.









(6)

Definition 1.4 (Quaternion product). The product of two quaternions

q =









q1

q2

q3

q4









p =









p1

p2

p3

p4









(7)

is defined as

q ∗ p =









q1 p1 − q2 p2 − q3 p3 − q4 p4

q2 p1 + q1 p2 − q4 p3 + q3 p4

q3 p1 + q4 p2 + q1 p3 − q2 p4

q4 p1 − q3 p2 + q2 p3 + q1 p4









. (8)

This can be derived by writing the quaternions in extended complex form and ex-
panding the product. The quaternion product is not commutative q ∗ p 6= p ∗ q.

Remark 1.1 (Partitioned quaternion product). The product of two quaternions

q =

(

sq

vq

)

p =

(

sp

vp

)

(9)

can be also computed as

q ∗ p =

(

sq sp− < vq,vp >
sq vp + sp vq + vq × vp

)

(10)

where < vq,vp > denotes the dot product and vq × vp denotes the cross product
of vectors vq and vp.

Remark 1.2 (Matrix representation of quaternion product). The product of two
quaternions

q =









q1

q2

q3

q4









p =









p1

p2

p3

p4









(11)

can be also written as matrix product:

q ∗ p = Q(q)p =









q1 −q2 −q3 −q4

q2 q1 −q4 q3

q3 q4 q1 −q2

q4 −q3 q2 q1

















p1

p2

p3

p4









, (12)
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or equivalently as

q ∗ p = P(p)q =









p1 −p2 −p3 −p4

p2 p1 p4 −p3

p3 −p4 p1 p2

p4 p3 −p2 p1

















q1

q2

q3

q4









. (13)

Definition 1.5 (Quaternion length). The length of a quaternion is the same as the
norm of the corresponding vector:

|q| =
√

q ∗ q∗ =
√

q2
1

+ q2
2

+ q2
3

+ q2
4
. (14)

Definition 1.6 (Quaternion inverse). The inverse of quaternion q with respect to
the quaternion product is given as

q−1 =
q∗

|q|2
. (15)

Theorem 1.1 (Quaternion exponential). The exponential of quaternion

q =

(

s
v

)

. (16)

is given as

exp(q) = exp(s)

(

cos(|v|)
v

|v| sin(|v|)

)

(17)

Theorem 1.2 (Quaternion logarithm). The logarithm of quaternion

q =

(

s
v

)

. (18)

is given as

ln(q) =

(

ln(|q|)
v

|v| arccos
(

s
|q|

)

.

)

(19)

Theorem 1.3 (Quaternion power). Quaternion power can be defined as

qp = exp(ln(q) ∗ p). (20)

Note that if p is in fact scalar, then the power is

qp = exp(ln(q) p). (21)
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2 Quaternion Representations of Rotations
Definition 2.1 (Unit quaternion). If quaternion is of the form

q =

(

cos(θ/2)
u sin(θ/2)

)

, (22)

where

• θ is a rotation angle,

• u is a 3-dimensional unit vector.

then q is a unit quaternion. Unit quaternions can be used for representing a rota-
tion of angle θ around the axis u. The unit quaternion also has unit length |q| = 1.

Definition 2.2 (Augmented point). In order to clean up the notation we shall
define an augmented point, which is a quaternion r formed from point r ∈ R

3 as
follows:

r =

(

0
r

)

(23)

This augmentation is always denoted by the line over the vector.

Theorem 2.1 (Rotation). Rotation of vector r ∈ R
3 an angle θ around unit vector

u ∈ R
3 can be computed as

r′ = q ∗ r ∗ q∗, (24)

where r is the augmented original vector, r′ denotes the aumented rotated vector
and q is a unit quaternion defined as in (22).

Remark 2.1 (Inverse rotation). The inverse rotation can be obtained by conju-
gating the rotation quaternion, that is:

r = q∗ ∗ r′ ∗ q, (25)

Theorem 2.2 (Conversion to direction cosine matrix). Rotations can be equiva-
lently represented in terms of direction cosine matrix C as follows:

r′ = Cr. (26)

A unit quaternion can be converted into equivalent direction cosine matrix as fol-
lows:

C =





(q2
1

+ q2
2
− q2

3
− q2

4
) 2(q2 q3 − q1 q4) 2(q2 q4 + q1 q3)

2(q2 q3 + q1 q4) (q2
1
− q2

2
+ q2

3
− q2

4
) 2(q3 q4 − q1 q2)

2(q2 q4 − q1 q3) 2(q3 q4 + q1 q2) (q2
1
− q2

2
− q2

3
+ q2

4
)



 .

(27)
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3 Quaternion differential equations
Theorem 3.1 (Time behavior of unit quaternion). The time evolution of time
varying quaternion with angular velocity ω(t) =

(

ω1(t) ω2(t) ω3(t)
)T is given

by the differential equation
dq

dt
=

1

2
q ∗ ω, (28)

where ω is the augmented angular velocity vector.

Remark 3.1 (Matrix representations of time behavior). The equation (28) can
be also written in form

dq

dt
= Fq(ω)q, (29)

where

Fq(ω) =
1

2









0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0









. (30)

Theorem 3.2 (Solution with constant angular velocity). If the angular velocity
ω is time independent constant, then the solution to the equation (28) with given
initial conditions q(t0) can be written as

q(t) = Φq(t0, t; ω)q(t0), (31)

where the transition matrix Φq(t0, t; ω) is given as

Φq(t0, t; ω) = exp [Fq(ω) ∆t]

= cos (|ω|∆t/2) I + 2
sin (|ω|∆t/2)

|ω|
Fq(ω),

(32)

where ∆t = t − t0.

Theorem 3.3 (Solution in quaternion form). The solution (31) can be expressed
as the quaternion product

q(t) = q(t0) ∗ φq(t0, t; ω), (33)

where

φq(t0, t; ω) = exp(ω ∆t/2)

=

(

cos (|ω|∆t/2)
ω

|ω| sin (|ω|∆t/2)

) (34)

and ∆t = t − t0.
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4 Quaternion interpolation
Definition 4.1 (SLERP).

p(t) = (q1 ∗ q−1

0
)t ∗ q0. (35)
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