
The Octave Queueing Toolbox
User’s Guide, Edition 1 for release 1.0.0

2012-02-03

Moreno Marzolla

Copyright c© 2008, 2009, 2010, 2011, 2012 Moreno Marzolla (marzolla@cs.unibo.it).

This is the first edition of the Queueing Toolbox documentation, and is consistent with
version 1.0.0 of the package.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the same conditions as for modified versions.

Portions of this document have been adapted from the octave manual, Copyright c© John
W. Eaton.

mailto:marzolla@cs.unibo.it

i

Table of Contents

1 Summary . 1

2 Installing the queueing toolbox 3
2.1 Installation through Octave package management system 3
2.2 Manual installation . 3
2.3 Content of the source distribution . 4
2.4 Using the queueing toolbox . 4

3 Introduction and Getting Started 7
3.1 Analysis of Closed Networks . 7
3.2 Analysis of Open Networks . 8

4 Markov Chains . 11
4.1 Discrete-Time Markov Chains . 11

4.1.1 Stationary Probability . 11
4.1.2 First Passage Times . 11

4.2 Continuous-Time Markov Chains . 12
4.2.1 Stationary Probability . 12
4.2.2 Birth-Death process . 13
4.2.3 Expected Sojourn Time . 13
4.2.4 Time-Averaged Expected Sojourn Time 14
4.2.5 Expected Time to Absorption . 15
4.2.6 First Passage Times . 16

5 Single Station Queueing Systems 17
5.1 The M/M/1 System . 17
5.2 The M/M/m System . 18
5.3 The M/M/inf System . 19
5.4 The M/M/1/K System . 20
5.5 The M/M/m/K System . 21
5.6 The Asymmetric M/M/m System . 22
5.7 The M/G/1 System . 22
5.8 The M/Hm/1 System . 23

6 Queueing Networks . 25
6.1 Introduction to QNs . 25

6.1.1 Single class models . 25
6.1.2 Multiple class models . 26

6.2 Generic Algorithms . 27
6.3 Algorithms for Product-Form QNs . 30

6.3.1 Jackson Networks . 30

ii queueing

6.3.2 The Convolution Algorithm . 32
6.3.3 Open networks . 34
6.3.4 Closed Networks . 36
6.3.5 Mixed Networks . 44

6.4 Algorithms for non Product-Form QNs . 45
6.5 Bounds on performance . 47
6.6 Utility functions . 50

6.6.1 Open or closed networks . 50
6.6.2 Computation of the visit counts . 51
6.6.3 Other utility functions . 52

Appendix A Contributing Guidelines 55

Appendix B Acknowledgements 57

Appendix C GNU GENERAL PUBLIC
LICENSE . 59

Concept Index . 71

Function Index . 73

Author Index . 75

Chapter 1: Summary 1

1 Summary

This document describes the queueing toolbox for GNU Octave (queueing in short). The
queueing toolbox, previously known as qnetworks, is a collection of functions written in
GNU Octave for analyzing queueing networks and Markov chains. Specifically, queueing
contains functions for analyzing Jackson networks, open, closed or mixed product-form
BCMP networks, and computation of performance bounds. The following algorithms have
been implemented

• Convolution for closed, single-class product-form networks with load-dependent service
centers;

• Exact and approximate Mean Value Analysis (MVA) for single and multiple class
product-form closed networks;

• MVA for mixed, multiple class product-form networks with load-independent service
centers;

• Approximate MVA for closed, single-class networks with blocking (MVABLO algorithm
by F. Akyildiz);

• Computation of Asymptotic Bounds, Balanced System Bounds and Geometric Bounds;

queueing provides functions for analyzing the following kind of single-station queueing
systems:

• M/M/1

• M/M/m

• M/M/∞
• M/M/1/k single-server, finite capacity system

• M/M/m/k multiple-server, finite capacity system

• Asymmetric M/M/m

• M/G/1 (general service time distribution)

• M/Hm/1 (Hyperexponential service time distribution)

Functions for Markov chain analysis are also provided (discrete and continuous time
Markov chains are supported):

• Birth-death process;

• Computation of transient and steady-state occupancy probabilities;

• Computation of mean time to absorption;

• Computation of time-averages sojourn time.

• Computation of mean passage times

The queueing toolbox is distributed under the terms of the GNU General Public License
(GPL), version 3 or later (see Appendix C [Copying], page 59). You are encouraged to share
this software with others, and make this package more useful by contributing additional
functions and reporting problems. See Appendix A [Contributing Guidelines], page 55.

If you use the queueing toolbox in a technical paper, please cite it as:

Moreno Marzolla, The qnetworks Toolbox: A Software Package for Queueing
Networks Analysis. Khalid Al-Begain, Dieter Fiems and William J. Knotten-
belt, Editors, Proceedings 17th International Conference on Analytical and

2 queueing

Stochastic Modeling Techniques and Applications (ASMTA 2010) Cardiff, UK,
June 14–16, 2010, volume 6148 of Lecture Notes in Computer Science, Springer,
pp. 102–116, ISBN 978-3-642-13567-5

If you use BibTeX, this is the citation block:

@inproceedings{queueing,

author = {Moreno Marzolla},

title = {The qnetworks Toolbox: A Software Package for Queueing

Networks Analysis},

booktitle = {Analytical and Stochastic Modeling Techniques and

Applications, 17th International Conference,

ASMTA 2010, Cardiff, UK, June 14-16, 2010. Proceedings},

editor = {Khalid Al-Begain and Dieter Fiems and William J. Knottenbelt},

year = {2010},

publisher = {Springer},

series = {Lecture Notes in Computer Science},

volume = {6148},

pages = {102--116},

ee = {http://dx.doi.org/10.1007/978-3-642-13568-2_8},

isbn = {978-3-642-13567-5}

}

An early draft of the paper above is available as Technical Report UBLCS-2010-04,
February 2010, Department of Computer Science, University of Bologna, Italy.

http://www.informatica.unibo.it/ricerca/ublcs/2010/UBLCS-2010-04

Chapter 2: Installing the queueing toolbox 3

2 Installing the queueing toolbox

2.1 Installation through Octave package management system

The most recent version of queueing is 1.0.0 and can be downloaded from

http://www.moreno.marzolla.name/software/queueing/queueing-1.0.0.tar.gz

To install queueing in the system-wide location, such that all functions are automatically
available when Octave starts, you can use ‘pkg install’ command. At the Octave prompt,
type the following:

octave:1> pkg install queueing-1.0.0.tar.gz

(Note: you may need to start Octave as root in order to allow the installation to copy
the files to the target locations). After this, all functions will be readily available each time
Octave starts, without the need to tweak the search path. To uninstall queueing, use the
‘pkg uninstall queueing’ command.

If you do not have root access, you can do a local installation by issuing the following
command at the Octave prompt:

octave:1> pkg install -local queueing-1.0.0.tar.gz

This will install queueing within the user’s home directory, and the package will be
available to that user only. Note: Octave version 3.2.3 as shipped with Ubuntu 10.04 seems
to ignore -local and always tries to install the package on the system directory.

2.2 Manual installation

If you want to install queueing in a custom location, you can download the source tarball
from the URL above, and unpack it somewhere:

tar xfz queueing-1.0.0.tar.gz

cd queueing-1.0.0/

Copy all .m files from the ‘inst/’ directory to some target location. Then, you can start
Octave with the ‘-p’ option to add the target location to the search path, so that Octave
will find all queueing functions automatically:

octave -p /path/to/queueing

For example, if all queueing m-files are in ‘/usr/local/queueing’, you can start Octave
as follows:

octave -p ‘/usr/local/queueing’

If you want, you can add the following line to ‘~/.octaverc’:

addpath("/path/to/queueing");

so that the path ‘/usr/local/queueing’ is automatically added to the search path each
time Octave is started, and you no longer need to specify the ‘-p’ option on the command
line.

http://www.moreno.marzolla.name/software/queueing/queueing-1.0.0.tar.gz

4 queueing

2.3 Content of the source distribution

The queueing source distribution contains the following subdirectories:

‘doc/’ Documentation source. Most of the documentation is extracted from the com-
ment blocks of individual function files from the ‘inst/’ directory.

‘inst/’ This directory contains the m-files which implement the various Queueing
Network algorithms provided by queueing. As a notational convention, the
names of source files containing functions for Queueing Networks start with the
‘qn’ prefix; the name of source files containing functions for Continuous-Time
Markov Chains (CTMSs) start with the ‘ctmc’ prefix, and the names of files
containing functions for Discrete-Time Markov Chains (DTMCs) start with
the ‘dtmc’ prefix.

‘test/’ This directory contains the test functions used to invoke all tests on all function
files.

‘scripts/’
This directory contains some utility scripts mostly from GNU Octave, which
extract the documentation from the specially-formatted comments in the m-files.

‘examples/’
This directory contains examples which are automatically extracted from the
‘demo’ blocks of the function files.

‘broken/’ This directory contains function files which are either not working properly, or
need additional testing before they can be moved to the ‘inst/’ directory.

The queueing package ships with a Makefile which can be used to produce the doc-
umentation (in PDF and HTML format), and automatically execute all function tests.
Specifically, the following targets are defined:

all Running ‘make’ (or ‘make all’) on the top-level directory builds the programs
used to extract the documentation from the comments embedded in the
m-files, and then produce the documentation in PDF and HTML format
(‘doc/queueing.pdf’ and ‘doc/queueing.html’, respectively).

check Running ‘make check’ will execute all tests contained in the m-files. If you mod-
ify the code of any function in the ‘inst/’ directory, you should run the tests
to ensure that no errors have been introduced. You are also encouraged to con-
tribute new tests, especially for functions which are not adequately validated.

clean

distclean

dist The ‘make clean’, ‘make distclean’ and ‘make dist’ commands are used to
clean up the source directory and prepare the distribution archive in compressed
tar format.

2.4 Using the queueing toolbox

You can use all functions by simply invoking their name with the appropriate parameters;
the queueing package should display an error message in case of missing/wrong parameters.
You can display the help text for any function using the help command. For example:

Chapter 2: Installing the queueing toolbox 5

octave:2> help qnmvablo

prints the documentation for the qnmvablo function. Additional information can be
found in the queueing manual, which is available in PDF format in ‘doc/queueing.pdf’
and in HTML format in ‘doc/queueing.html’.

Within GNU Octave, you can also run the test and demo blocks associated to the
functions, using the test and demo commands respectively. To run all the tests of, say, the
qnmvablo function:

octave:3> test qnmvablo

a PASSES 4 out of 4 tests

To execute the demos of the qnclosed function, use the following:

octave:4> demo qnclosed

Chapter 3: Introduction and Getting Started 7

3 Introduction and Getting Started

In this chapter we give some usage examples of the queueing package. The reader is assumed
to be familiar with Queueing Networks (although some basic terminology and notation will
be given here). Additional usage examples are embedded in most of the function files; to
display and execute the demos associated with function fname you can type demo fname at
the Octave prompt. For example

demo qnclosed

executes all demos (if any) for the qnclosed function.

3.1 Analysis of Closed Networks

Let us consider a simple closed network with K = 3 service centers. Each center is of type
M/M/1–FCFS. We denote with Si the average service time at center i, i = 1, 2, 3. Let
S1 = 1.0, S2 = 2.0 and S3 = 0.8. The routing of jobs within the network is described
with a routing probability matrix P . Specifically, a request completing service at center i is
enqueued at center j with probability Pij. Let us assume the following routing probability
matrix:

P =

 0 0.3 0.7
1 0 0
1 0 0

For example, according to matric P a job completing service at center 1 is routed to

center 2 with probability 0.3, and is routed to center 3 with probability 0.7.

The network above can be analyzed with the qnclosed function; if there is just a single
class of requests, as in the example above, qnclosed calls qnclosedsinglemva which imple-
ments the Mean Value Analysys (MVA) algorithm for single-class, product-form network.

qnclosed requires the following parameters:

N Number of requests in the network (since we are considering a closed network,
the number of requests is fixed)

S Array of average service times at the centers: S(k) is the average service time
at center k.

V Array of visit ratios: V(k) is the average number of visits to center k.

As can be seen, we must compute the visit ratios (or visit counts) Vk for each center k.
The visit counts satisfy the following equations:

Vj =
K∑
i=1

ViPij

We can compute Vk from the routing probability matrix Pij using the qnvisits function:

P = [0 0.3 0.7; 1 0 0; 1 0 0];

V = qnvisits(P)

⇒ V = 1.00000 0.30000 0.70000

We can check that the computed values satisfy the above equation by evaluating the
following expression:

8 queueing

V*P

⇒ ans = 1.00000 0.30000 0.70000

which is equal to V . Hence, we can analyze the network for a given population size N (for
example, N = 10) as follows:

N = 10;

S = [1 2 0.8];

P = [0 0.3 0.7; 1 0 0; 1 0 0];

V = qnvisits(P);

[U R Q X] = qnclosed(N, S, V)

⇒ U = 0.99139 0.59483 0.55518

⇒ R = 7.4360 4.7531 1.7500

⇒ Q = 7.3719 1.4136 1.2144

⇒ X = 0.99139 0.29742 0.69397

The output of qnclosed includes the vector of utilizations Uk at center k, response time
Rk, average number of customers Qk and throughput Xk. In our example, the throughput
of center 1 is X1 = 0.99139, and the average number of requests in center 3 is Q3 = 1.2144.
The utilization of center 1 is U1 = 0.99139, which is the higher value among the service
centers. Tus, center 1 is the bottleneck device.

This network can also be analyzed with the qnsolve function. qnsolve can handle open,
closed or mixed networks, and allows the network to be described in a very flexible way.
First, let Q1, Q2 and Q3 be the variables describing the service centers. Each variable is
instantiated with the qnmknode function.

Q1 = qnmknode("m/m/m-fcfs", 1);

Q2 = qnmknode("m/m/m-fcfs", 2);

Q3 = qnmknode("m/m/m-fcfs", 0.8);

The first parameter of qnmknode is a string describing the type of the node. Here we use
"m/m/m-fcfs" to denote a M/M/m–FCFS center. The second parameter gives the average
service time. An optional third parameter can be used to specify the number m of service
centers. If omitted, it is assumed m = 1 (single-server node).

Now, the network can be analyzed as follows:

N = 10;

V = [1 0.3 0.7];

[U R Q X] = qnsolve("closed", N, { Q1, Q2, Q3 }, V)

⇒ U = 0.99139 0.59483 0.55518

⇒ R = 7.4360 4.7531 1.7500

⇒ Q = 7.3719 1.4136 1.2144

⇒ X = 0.99139 0.29742 0.69397

Of course, we get exactly the same results. Other functions can be used for closed
networks, see Section 6.3 [Algorithms for Product-Form QNs], page 30.

3.2 Analysis of Open Networks

Open networks can be analyzed in a similar way. Let us consider an open network with
K = 3 service centers, and routing probability matrix as follows:

Chapter 3: Introduction and Getting Started 9

P =

 0 0.3 0.5
1 0 0
1 0 0

In this network, requests can leave the system from center 1 with probability (1− (0.3+

0.5) = 0.2. We suppose that external jobs arrive at center 1 with rate λ1 = 0.15; there are
no arrivals at centers 2 and 3.

Similarly to closed networks, we first need to compute the visit counts Vk to center k.
Again, we use the qnvisits function as follows:

P = [0 0.3 0.5; 1 0 0; 1 0 0];

lambda = [0.15 0 0];

V = qnvisits(P, lambda)

⇒ V = 5.00000 1.50000 2.50000

where lambda(k) is the arrival rate at center k, and P is the routing matrix. The visit
counts Vk for open networks satisfy the following equation:

Vj = P0j +
K∑
i=1

ViPij

where P0j is the probability of an external arrival to center j. This can be computed as:

P0j =
λj∑K
i=1 λi

Assuming the same service times as in the previous example, the network can be analyzed
with the qnopen function, as follows:

S = [1 2 0.8];

[U R Q X] = qnopen(sum(lambda), S, V)

⇒ U = 0.75000 0.45000 0.30000

⇒ R = 4.0000 3.6364 1.1429

⇒ Q = 3.00000 0.81818 0.42857

⇒ X = 0.75000 0.22500 0.37500

The first parameter of the qnopen function is the (scalar) aggregate arrival rate.

Again, it is possible to use the qnsolve high-level function:

Q1 = qnmknode("m/m/m-fcfs", 1);

Q2 = qnmknode("m/m/m-fcfs", 2);

Q3 = qnmknode("m/m/m-fcfs", 0.8);

lambda = [0.15 0 0];

[U R Q X] = qnsolve("open", sum(lambda), { Q1, Q2, Q3 }, V)

⇒ U = 0.75000 0.45000 0.30000

⇒ R = 4.0000 3.6364 1.1429

⇒ Q = 3.00000 0.81818 0.42857

⇒ X = 0.75000 0.22500 0.37500

Chapter 4: Markov Chains 11

4 Markov Chains

4.1 Discrete-Time Markov Chains

4.1.1 Stationary Probability

[Function File]p = dtmc (P)
[Function File]p = dtmc (P, n, p0)

With a single argument, compute the steady-state probability vector p(1), ...,

p(N) for a Discrete-Time Markov Chain given the N×N transition probability matrix
P. With three arguments, compute the probability vector p(1), ..., p(N) after n
steps, given initial probability vector p0 at time 0.

INPUTS

P P(i,j) is the transition probability from state i to state j. P must be an
irreducible stochastic matrix, which means that the sum of each row must
be 1 (

∑N
j=1 Pij = 1), and the rank of P must be equal to its dimension.

n Step at which to compute the transient probability

p0 p0(i) is the probability that at step 0 the system is in state i.

OUTPUTS

p If this function is invoked with a single argument, p(i) is the steady-state
probability that the system is in state i. p satisfies the equations p = pP
and

∑N
i=1 pi = 1. If this function is invoked with three arguments, p(i)

is the marginal probability that the system is in state i at step n, given
the initial probabilities p0(i) that the initial state is i.

4.1.2 First Passage Times

The First Passage Time Mij is defined as the average number of transitions needed to visit
state j for the first time, starting from state i. Matrix M satisfies the property that

Mij = 1 +
∑
k 6=j

PikMkj

[Function File]M = dtmc_fpt (P)
[Function File]m = dtmc_fpt (P, i, j)

If called with a single argument, computes the mean first passage times M(i,j), that
are the average number of transitions before state j is reached, starting from state
i, for all 1 ≤ i, j ≤ N . If called with three arguments, returns the single value m =

M(i,j).

INPUTS

P P(i,j) is the transition probability from state i to state j. P must be an
irreducible stochastic matrix, which means that the sum of each row must
be 1 (

∑N
j=1 Pij = 1), and the rank of P must be equal to its dimension.

i Initial state.

12 queueing

j Destination state. If j is a vector, returns the mean first passage time to
any state in j.

OUTPUTS

M If this function is called with a single argument, the result M(i,j) is the
average number of transitions before state j is reached for the first time,
starting from state i.

m If this function is called with three arguments, the result m is the average
number of transitions before state j is visited for the first time, starting
from state i.

4.2 Continuous-Time Markov Chains

4.2.1 Stationary Probability

[Function File]p = ctmc (Q)
[Function File]p = ctmc (Q, t. q0)

With a single argument, compute the stationary state occupancy probability vector
p(1), . . . , p(N) for a Continuous-Time Markov Chain with infinitesimal generator
matrix Q of size N ×N . With three arguments, compute the state occupancy prob-
abilities p(1), . . . , p(N) at time t, given initial state occupancy probabilities p0 at
time 0.

INPUTS

Q Infinitesimal generator matrix. Q is a N×N square matrix where Q(i,j)
is the transition rate from state i to state j, for 1 ≤ i 6= j ≤ N . Transition
rates must be nonnegative, and

∑N
j=1Qij = 0

t Time at which to compute the transient probability

p0 p0(i) is the probability that the system is in state i at time 0 .

OUTPUTS

p If this function is invoked with a single argument, p(i) is the steady-
state probability that the system is in state i, i = 1, . . . , N . The vector p
satisfies the equation pQ = 0 and

∑N
i=1 pi = 1. If this function is invoked

with three arguments, p(i) is the probability that the system is in state
i at time t, given the initial occupancy probabilities q0.

EXAMPLE

Consider a two-state CTMC such that transition rates between states are equal to 1.
This can be solved as follows:

Q = [-1 1; \

1 -1];

q = ctmc(Q)

⇒ q = 0.50000 0.50000

Chapter 4: Markov Chains 13

4.2.2 Birth-Death process

[Function File]p = ctmc_bd (birth, death)
Compute the steady-state solution of a birth-death process with state space
(1, . . . , N).

INPUTS

birth Vector with N − 1 elements, where birth(i) is the transition rate from
state i to state i+ 1.

death Vector with N − 1 elements, where death(i) is the transition rate from
state i+ 1 to state i.

OUTPUTS

p p(i) is the steady-state probability that the system is in state i, i =
1, . . . , N .

4.2.3 Expected Sojourn Time

Given a N state continuous-time Markov Chain with infinitesimal generator matrix Q, we
define the vector L(t) = (L1(t), L2(t), . . . LN(t)) such that Li(t) is the expected sojourn time
in state i during the interval [0, t), assuming that the initial occupancy probability at time
0 was π(0). Then, L(t) is the solution of the following differential equation:

dL(t)

dt
= L(t)Q+ π(0), L(0) = 0

The function ctmc_exps can be used to compute L(t), by using the lsode Octave func-
tion to solve the above linear differential equation.

[Function File]L = ctmc_exps (Q, tt, p)
Compute the expected total time L(t,j) spent in state j during the time interval
[0,tt(t)), assuming that at time 0 the state occupancy probability was p.

INPUTS

Q Infinitesimal generator matrix. Q(i,j) is the transition rate from state i
to state j, 1 ≤ i 6= j ≤ N . The matrix Q must also satisfy the condition
sum(Q,2) == 0

tt This parameter is a vector used for numerical integration. The first ele-
ment tt(1) must be 0, and the last element tt(end) must be the upper
bound of the interval [0, t) of interest (tt(end) == t).

p p(i) is the probability that at time 0 the system was in state i, for all
i = 1, . . . , N

OUTPUTS

L L(t,j) is the expected time spent in state j during the interval
[0,tt(t)). 1 ≤ t ≤ length(tt)

14 queueing

EXAMPLE

Let us consider a pure-birth, 4-states CTMC such that the transition rate from state i to
state i+ 1 is λi = iλ (i = 1, 2, 3), with λ = 0.5. The following code computes the expected
sojourn time in state i, given the initial occupancy probability p0 = (1, 0, 0, 0).

lambda = 0.5;

N = 4;

birth = lambda*linspace(1,N-1,N-1);

death = zeros(1,N-1);

Q = diag(birth,1)+diag(death,-1);

Q -= diag(sum(Q,2));

tt = linspace(0,10,100);

p0 = zeros(1,N); p0(1)=1;

L = ctmc_exps(Q,tt,p0);

plot(tt, L(:,1), ";State 1;", "linewidth", 2, \

tt, L(:,2), ";State 2;", "linewidth", 2, \

tt, L(:,3), ";State 3;", "linewidth", 2, \

tt, L(:,4), ";State 4 (absorbing);", "linewidth", 2);

legend("location","northwest");

xlabel("Time");

ylabel("Expected sojourn time");

4.2.4 Time-Averaged Expected Sojourn Time

[Function File]M = ctmc_taexps (Q, tt, p)
Compute the time-averaged sojourn time M(t,j), defined as the fraction of the time
interval [0,tt(t)) spent in state j, assuming that at time 0 the state occupancy
probability was p.

INPUTS

Q Infinitesimal generator matrix. Q(i,j) is the transition rate from state i
to state j, 1 ≤ i 6= j ≤ N . The matrix Q must also satisfy the condition
sum(Q,2) == 0

tt This parameter is a vector used for numerical integration of the sujourn
time. The first element tt(1) must be slightly larger than 0, and the last
element tt(end) must be the upper limit of the interval [0, t) of interest
(tt(end) == t). This vector is used by the ODE solver to compute the
solution M.

p p(i) is the probability that, at time 0, the system was in state i, for all
i = 1, . . . , N

OUTPUTS

M M(t,j) is the expected fraction of time spent in state j during the interval
[0, tt(t)) assuming that the state occupancy probability at time zero was
p. 1 ≤ t ≤ length(tt)

EXAMPLE

Chapter 4: Markov Chains 15

lambda = 0.5;

N = 4;

birth = lambda*linspace(1,N-1,N-1);

death = zeros(1,N-1);

Q = diag(birth,1)+diag(death,-1);

Q -= diag(sum(Q,2));

t = linspace(1e-3,50,500);

p = zeros(1,N); p(1)=1;

M = ctmc_taexps(Q,t,p);

plot(t, M(:,1), ";State 1;", "linewidth", 2, \

t, M(:,2), ";State 2;", "linewidth", 2, \

t, M(:,3), ";State 3;", "linewidth", 2, \

t, M(:,4), ";State 4 (absorbing);", "linewidth", 2);

legend("location","east");

xlabel("Time");

ylabel("Time-averaged Expected sojourn time");

4.2.5 Expected Time to Absorption

If we consider a Markov Chain with absorbing states, it is possible to define the expected
time to absorption as the expected time until the system goes into an absorbing state.
More specifically, let us suppose that A is the set of transient (i.e., non-absorbing) states
of a CTMC with N states and infinitesimal generator matrix Q. The expected time to
absorption LA(∞) is defined as the solution of the following equation:

LA(∞)QA = −πA(0)

where QA is the restriction of matrix Q to only states in A, and πA(0) is the initial state
occupancy probability at time 0, restricted to states in A.

[Function File]t = ctmc_mtta (Q, p)
Compute the Mean-Time to Absorption (MTTA) starting from initial occupancy
probability p at time 0. If there are no absorbing states, this function fails with an
error.

INPUTS

Q N × N infinitesimal generator matrix. Q(i,j) is the transition rate
from state i to state j, i 6= j. The matrix Q must satisfy the condi-
tion

∑N
j=1Qij = 0

p p(i) is the probability that the system is in state i at time 0, for each
i = 1, . . . , N

OUTPUTS

t Mean time to absorption of the process represented by matrix Q. If there
are no absorbing states, this function fails.

EXAMPLE

Let us consider a simple model of a redundant disk array. We assume that the array is
made of 5 independent disks, such that the array can tolerate up to 2 disk failures without

16 queueing

losing data. If three or more disks break, the array is dead and unrecoverable. We want to
estimate the Mean-Time-To-Failure (MTTF) of the disk array.

We model this system as a 4 states Markov chain with state space {2, 3, 4, 5}. State i
denotes the fact that exactly i disks are active; state 2 is absorbing. Let µ be the failure
rate of a single disk. The system starts in state 5 (all disks are operational). We use a pure
death process, with death rate from state i to state i− 1 is µi, for i = 3, 4, 5).

The MTTF of the disk array is the MTTA of the Markov Chain, and can be computed
with the following expression:

mu = 0.01;

death = [3 4 5] * mu;

Q = diag(death,-1);

Q -= diag(sum(Q,2));

t = ctmc_mtta(Q,[0 0 0 1])

⇒ t = 78.333

REFERENCES

G. Bolch, S. Greiner, H. de Meer and K. Trivedi, Queueing Networks and Markov Chains:
Modeling and Performance Evaluation with Computer Science Applications, Wiley, 1998.

4.2.6 First Passage Times

[Function File]M = ctmc_fpt (Q)
[Function File]m = ctmc_fpt (Q, i, j)

If called with a single argument, computes the mean first passage times M(i,j), the
average times before state j is reached, starting from state i, for all 1 ≤ i, j ≤ N . If
called with three arguments, returns the single value m = M(i,j).

INPUTS

Q Infinitesimal generator matrix. Q is a N×N square matrix where Q(i,j)
is the transition rate from state i to state j, for 1 ≤ i 6= j ≤ N . Transition
rates must be nonnegative, and

∑N
j=1Qij = 0

i Initial state.

j Destination state. If j is a vector, returns the mean first passage time to
any state in j.

OUTPUTS

M If this function is called with a single argument, the result M(i,j) is the
average time before state j is visited for the first time, starting from state
i.

m If this function is called with three arguments, the result m is the average
time before state j is visited for the first time, starting from state i.

Chapter 5: Single Station Queueing Systems 17

5 Single Station Queueing Systems

Single Station Queueing Systems contain a single station, and are thus quite easy to analyze.
The queueing package contains functions for handling the following types of queues:

• M/M/1 single-server queueing station;

• M/M/m multiple-server queueing station;

• Asymmetric M/M/m;

• M/M/∞ infinite-server station (delay center);

• M/M/1/K single-server, finite-capacity queueing station;

• M/M/m/K multiple-server, finite-capacity queueing station;

• M/G/1 single-server with general service time distribution;

• M/Hm/1 single-server with hyperexponential service time distribution.

The functions which analyze the queues above can be used as building blocks for ana-
lyzing Queueing Networks. For example, Jackson networks can be solved by computing the
aggregate arrival rates to each node, and then solving each node in isolation as if it were a
single station queueing system.

5.1 The M/M/1 System

The M/M/1 system is made of a single server connected to an unlimited FCFS queue. The
mean arrival rate is Poisson with arrival rate λ; the service time is exponentially distributed
with average service rate µ. The system is stable if λ < µ.

[Function File][U, R, Q, X, p0] = qnmm1 (lambda, mu)
Compute utilization, response time, average number of requests and throughput for
a M/M/1 queue.

The steady-state probability πk that there are k jobs in the system, k ≥ 0, can be
computed as:

πk = (1− ρ)ρk

where ρ = λ/µ is the server utilization.

INPUTS

lambda Arrival rate (lambda > 0).

mu Service rate (mu > lambda).

OUTPUTS

U Server utilization

R Service center response time

Q Average number of requests in the system

X Service center throughput. If the system is ergodic, we will always have
X = lambda

18 queueing

p0 Steady-state probability that there are no requests in the system.

lambda and mu can be vectors of the same size. In this case, the results will be
vectors as well.

See also: qnmmm, qnmminf, qnmmmk.

REFERENCES

G. Bolch, S. Greiner, H. de Meer and K. Trivedi, Queueing Networks and Markov Chains:
Modeling and Performance Evaluation with Computer Science Applications, Wiley, 1998,
Section 6.3.

5.2 The M/M/m System

TheM/M/m system is similar to theM/M/1 system, except that there are m ≥ 1 identical
servers connected to a single queue. Thus, at most m requests can be served at the same
time. The M/M/m system can be seen as a single server with load-dependent service rate
µ(n), which is a function of the number n of nodes in the center:

mu(n) = min(m,n)*mu

[Function File][U, R, Q, X, p0, pm] = qnmmm (lambda, mu)
[Function File][U, R, Q, X, p0, pm] = qnmmm (lambda, mu, m)

Compute utilization, response time, average number of requests in service and
throughput for a M/M/m queue, a queueing system with m identical service centers
connected to a single queue.

The steady-state probability πk that there are k jobs in the system, k ≥ 0, can be
computed as:

πk =

π0

(mρ)k

k!
0 ≤ k ≤ m;

π0

ρkmm

m!
k > m.

where ρ = λ/(mµ) is the individual server utilization. The steady-state probability
π0 that there are no jobs in the system can be computed as:

π0 =

[
m−1∑
k=0

(mρ)k

k!
+

(mρ)m

m!

1

1− ρ

]−1

INPUTS

lambda Arrival rate (lambda>0).

mu Service rate (mu>lambda).

m Number of servers (m ≥ 1). If omitted, it is assumed m=1.

OUTPUTS

U Service center utilization, U = λ/(mµ).

R Service center response time

Chapter 5: Single Station Queueing Systems 19

Q Average number of requests in the system

X Service center throughput. If the system is ergodic, we will always have
X = lambda

p0 Steady-state probability that there are 0 requests in the system

pm Steady-state probability that an arriving request has to wait in the queue

lambda, mu and m can be vectors of the same size. In this case, the results will be
vectors as well.

See also: qnmm1,qnmminf,qnmmmk.

REFERENCES

G. Bolch, S. Greiner, H. de Meer and K. Trivedi, Queueing Networks and Markov Chains:
Modeling and Performance Evaluation with Computer Science Applications, Wiley, 1998,
Section 6.5.

5.3 The M/M/inf System

The M/M/∞ system is similar to the M/M/m system, except that there are infinitely
many identical servers (that is, m =∞). Each new request is assigned to a new server, so
that queueing never occurs. The M/M/∞ system is always stable.

[Function File][U, R, Q, X, p0] = qnmminf (lambda, mu)
Compute utilization, response time, average number of requests and throughput for
a M/M/∞ queue. This is a system with an infinite number of identical servers.
Note that a M/M/∞ system is always stable, regardless the values of the arrival and
service rates.

The steady-state probability πk that there are k requests in the system, k ≥ 0, can
be computed as:

πk =
1

k!

(
λ

µ

)k
e−λ/µ

INPUTS

lambda Arrival rate (lambda>0).

mu Service rate (mu>0).

OUTPUTS

U Traffic intensity (defined as λ/µ). Note that this is different from the
utilization, which in the case of M/M/∞ centers is always zero.

R Service center response time.

Q Average number of requests in the system (which is equal to the traffic
intensity λ/µ).

X Throughput (which is always equal to X = lambda).

p0 Steady-state probability that there are no requests in the system

20 queueing

lambda and mu can be vectors of the same size. In this case, the results will be
vectors as well.

See also: qnmm1,qnmmm,qnmmmk.

REFERENCES

G. Bolch, S. Greiner, H. de Meer and K. Trivedi, Queueing Networks and Markov Chains:
Modeling and Performance Evaluation with Computer Science Applications, Wiley, 1998,
Section 6.4.

5.4 The M/M/1/K System

In a M/M/1/K finite capacity system there can be at most k jobs at any time. If a new
request tries to join the system when there are alreadyK other requests, the arriving request
is lost. The queue has K − 1 slots. The M/M/1/K system is always stable, regardless of
the arrival and service rates λ and µ.

[Function File][U, R, Q, X, p0, pK] = qnmm1k (lambda, mu, K)
Compute utilization, response time, average number of requests and throughput for a
M/M/1/K finite capacity system. In a M/M/1/K queue there is a single server; the
maximum number of requests in the system is K, and the maximum queue length is
K − 1.

The steady-state probability πk that there are k jobs in the system, 0 ≤ k ≤ K, can
be computed as:

πk =
(1− a)ak

1− aK+1

where a = λ/µ.

INPUTS

lambda Arrival rate (lambda>0).

mu Service rate (mu>0).

K Maximum number of requests allowed in the system (K ≥ 1).

OUTPUTS

U Service center utilization, which is defined as U = 1-p0

R Service center response time

Q Average number of requests in the system

X Service center throughput

p0 Steady-state probability that there are no requests in the system

pK Steady-state probability that there are K requests in the system (i.e.,
that the system is full)

lambda, mu and K can be vectors of the same size. In this case, the results will be
vectors as well.

See also: qnmm1,qnmminf,qnmmm.

Chapter 5: Single Station Queueing Systems 21

5.5 The M/M/m/K System

The M/M/m/K finite capacity system is similar to the M/M/1/k system except that the
number of servers is m, where 1 ≤ m ≤ K. The queue is made of K − m slots. The
M/M/m/K system is always stable.

[Function File][U, R, Q, X, p0, pK] = qnmmmk (lambda, mu, m, K)
Compute utilization, response time, average number of requests and throughput for a
M/M/m/K finite capacity system. In aM/M/m/K system there arem ≥ 1 identical
service centers sharing a fixed-capacity queue. At any time, at most K ≥ m requests
can be in the system. The maximum queue length is K−m. This function generates
and solves the underlying CTMC.

The steady-state probability πk that there are k jobs in the system, 0 ≤ k ≤ K can
be expressed as:

πk =

ρk

k!
π0 if 0 ≤ k ≤ m;

ρm

m!

(
ρ

m

)k−m
π0 if m < k ≤ K

where ρ = λ/µ is the offered load. The probability π0 that the system is empty can
be computed by considering that all probabilities must sum to one:

∑K
k=0 πk = 1,

which gives:

π0 =

[
m∑
k=0

ρk

k!
+
ρm

m!

K∑
k=m+1

(
ρ

m

)k−m]−1
INPUTS

lambda Arrival rate (lambda>0).

mu Service rate (mu>0).

m Number of servers (m ≥ 1).

K Maximum number of requests allowed in the system, including those in-
side the service centers (K ≥ m).

OUTPUTS

U Service center utilization

R Service center response time

Q Average number of requests in the system

X Service center throughput

p0 Steady-state probability that there are no requests in the system.

pK Steady-state probability that there are K requests in the system (i.e.,
probability that the system is full).

lambda, mu, m and K can be either scalars, or vectors of the same size. In this case,
the results will be vectors as well.

See also: qnmm1,qnmminf,qnmmm.

22 queueing

REFERENCES

G. Bolch, S. Greiner, H. de Meer and K. Trivedi, Queueing Networks and Markov Chains:
Modeling and Performance Evaluation with Computer Science Applications, Wiley, 1998,
Section 6.6.

5.6 The Asymmetric M/M/m System

The Asymmetric M/M/m system contains m servers connected to a single queue. Dif-
ferently from the M/M/m system, in the asymmetric M/M/m each server may have a
different service time.

[Function File][U, R, Q, X] = qnammm (lambda, mu)
Compute approximate utilization, response time, average number of requests in ser-
vice and throughput for an asymmetric M/M/m queue. In this system there are m
different service centers connected to a single queue. Each server has its own (possibly
different) service rate. If there is more than one server available, requests are routed
to a randomly-chosen one.

INPUTS

lambda Arrival rate (lambda>0).

mu mu(i) is the service rate of server i, 1 ≤ i ≤ m. The system must be
ergodic (lambda < sum(mu)).

OUTPUTS

U Approximate service center utilization, U = λ/(
∑
i µi).

R Approximate service center response time

Q Approximate number of requests in the system

X Approximate service center throughput. If the system is ergodic, we will
always have X = lambda

See also: qnmmm.

REFERENCES

G. Bolch, S. Greiner, H. de Meer and K. Trivedi, Queueing Networks and Markov Chains:
Modeling and Performance Evaluation with Computer Science Applications, Wiley, 1998

5.7 The M/G/1 System

[Function File][U, R, Q, X, p0] = qnmg1 (lambda, xavg, x2nd)
Compute utilization, response time, average number of requests and throughput for a
M/G/1 system. The service time distribution is described by its mean xavg, and by
its second moment x2nd. The computations are based on results from L. Kleinrock,
Queuing Systems, Wiley, Vol 2, and Pollaczek-Khinchine formula.

INPUTS

lambda Arrival rate.

xavg Average service time

Chapter 5: Single Station Queueing Systems 23

x2nd Second moment of service time distribution

OUTPUTS

U Service center utilization

R Service center response time

Q Average number of requests in the system

X Service center throughput

p0 probability that there is not any request at system

lambda, xavg, t2nd can be vectors of the same size. In this case, the results will be
vectors as well.

See also: qnmh1.

5.8 The M/Hm/1 System

[Function File][U, R, Q, X, p0] = qnmh1 (lambda, mu, alpha)
Compute utilization, response time, average number of requests and throughput for a
M/Hm/1 system. In this system, the customer service times have hyper-exponential
distribution:

B(x) =
m∑
j=1

αj(1− e−µjx), x > 0

where αj is the probability that the request is served at phase j, in which case the
average service rate is µj. After completing service at phase j, for some j, the request
exits the system.

INPUTS

lambda Arrival rate.

mu mu(j) is the phase j service rate. The total number of phases m is
length(mu).

alpha alpha(j) is the probability that a request is served at phase j. alpha
must have the same size as mu.

OUTPUTS

U Service center utilization

R Service center response time

Q Average number of requests in the system

X Service center throughput

Chapter 6: Queueing Networks 25

6 Queueing Networks

6.1 Introduction to QNs

Queueing Networks (QN) are a very simple yet powerful modeling tool which is used to
analyze many kind of systems. In its simplest form, a QN is made of K service centers.
Each service center i has a queue, which is connected to mi (generally identical) servers.
Customers (or requests) arrive at the service center, and join the queue if there is a slot
available. Then, requests are served according to a (de)queueing policy. After service
completes, the requests leave the service center.

The service centers for which mi = ∞ are called delay centers or infinite servers. If a
service center has infinite servers, of course each new request will find one server available,
so there will never be queueing.

Requests join the queue according to a queueing policy, such as:

FCFS First-Come-First-Served

LCFS-PR Last-Come-First-Served, Preemptive Resume

PS Processor Sharing

IS Infinite Server, there is an infinite number of identical servers so that each
request always finds a server available, and there is no queueing

A population of requests or customers arrives to the system system, requesting service
to the service centers. The request population may be open or closed. In open systems
there is an infinite population of requests. New customers arrive from outside the system,
and eventually leave the system. In closed systems there is a fixed population of request
which continuously interacts with the system.

There might be a single class of requests, meaning that all requests behave in the same
way (e.g., they spend the same average time on each particular server), or there might be
multiple classes of requests.

6.1.1 Single class models

In single class models, all requests are indistinguishable and belong to the same class. This
means that every request has the same average service time, and all requests move through
the system with the same routing probabilities.

Model Inputs

\lambdai External arrival rate to service center i.

\lambda Overall external arrival rate to the whole system: λ =
∑
i λi.

Si Average service time. Si is the average service time on service center i. In other
words, Si is the average time from the instant in which a request is extracted
from the queue and starts being service, and the instant at which service finishes
and the request moves to another queue (or exits the system).

Pij Routing probability matrix. P = Pij is a K × K matrix such that Pij is the
probability that a request completing service at server i will move directly to
server j, The probability that a request leaves the system after service at service
center i is 1−

∑K
j=1 Pij.

26 queueing

Vi Average number of visits. Vi is the average number of visits to the service center
i. This quantity will be described shortly.

Model Outputs

Ui Service center utilization. Ui is the utilization of service center i. The utilization
is defined as the fraction of time in which the resource is busy (i.e., the server
is processing requests).

Ri Average response time. Ri is the average response time of service center i. The
average response time is defined as the average time between the arrival of a
customer in the queue, and the completion of service.

Qi Average number of customers. Qi is the average number of requests in service
center i. This includes both the requests in the queue, and the request being
served.

Xi Throughput. Xi is the throughput of service center i. The throughput is defined
as the ratio of job completions (i.e., average number of jobs completed over a
fixed interval of time).

Given these output parameters, additional performance measures can be computed as fol-
lows:

X System throughput, X = X1/V1

R System response time, R =
∑K
k=1RkVk

Q Average number of requests in the system, Q = N −XZ

For open, single-class models, the scalar λ denotes the external arrival rate of requests
to the system. The average number of visits satisfy the following equation:

Vj = P0j +
∑K
i=1 ViPij

where P0j is the probability that an external arrival goes to service center j. If λj is the
external arrival rate to service center j, and λ =

∑
j λj is the overall external arrival rate,

then P0j = λj/λ.

For closed models, the visit ratios satisfy the following equation:

Vj =
∑K
i=1 ViPij

6.1.2 Multiple class models

In multiple class QN models, we assume that there exist C different classes of requests. Each
request from class c spends on average time Sck in service at service center k. For open
models, we denote with λ = λck the arrival rates, where λck is the external arrival rate of
class c customers at service center k. For closed models, we denote withN = (N1, N2, . . . NC)
the population vector, where Nc is the number of class c requests in the system.

The transition probability matrix for these kind of networks will be a C ×K × C ×K
matrix P = Prisj such that Prisj is the probability that a class r request which completes
service at center i will join server j as a class s request.

Model input and outputs can be adjusted by adding additional indexes for the customer
classes.

Model Inputs

Chapter 6: Queueing Networks 27

\lambdaci External arrival rate of class-c requests to service center i

\lambda Overall external arrival rate to the whole system: λ =
∑
c

∑
i λci

Sci Average service time. Sci is the average service time on service center i for class
c requests.

Prisj Routing probability matrix. P = Prisj is a C ×K × C ×K matrix such that
Prisj is the probability that a class r request which completes service at server
i will move to server j as a class s request.

Vci Average number of visits. Vci is the average number of visits of class c requests
to the service center i.

Model Outputs

Uci Utilization of service center i by class c requests. The utilization is defined as
the fraction of time in which the resource is busy (i.e., the server is processing
requests).

Rci Average response time experienced by class c requests on service center i. The
average response time is defined as the average time between the arrival of a
customer in the queue, and the completion of service.

Qci Average number of class c requests on service center i. This includes both the
requests in the queue, and the request being served.

Xci Throughput of service center i for class c requests. The throughput is defined
as the rate of completion of class c requests.

It is possible to define aggregate performance measures as follows:

Ui Utilization of service center i: Ui =
∑C
c=1 Uci

Rc System response time for class c requests: Rc =
∑K
i=1RciVci

Qc Average number of class c requests in the system: Qc =
∑K
i=1Qci

Xc Class c throughput: Xc = Xc1/Vc1

We can define the visit ratios Vsj for class s customers at service center j as follows:

Vsj =
∑C
r=1

∑K
i=1 VriPrisj, Vs1 = 1

while for open networks:

Vsj = P0sj +
∑C
r=1

∑K
i=1 VriPrisj

where P0sj is the probability that an external arrival goes to service center j as a class-
s request. If λsj is the external arrival rate of class s requests to service center j, and
λ =

∑
s

∑
j λsj is the overall external arrival rate to the whole system, then P0sj = λsj/λ.

6.2 Generic Algorithms

The queueing package provides a couple of high-level functions for defining and solving QN
models. These functions can be used to define a open or closed QN model (with single or
multiple job classes), with arbitrary configuration and queueing disciplines. At the moment
only product-form networks can be solved, See Section 6.3 [Algorithms for Product-Form
QNs], page 30.

28 queueing

The network is defined by two parameters. The first one is the list of nodes, encoded
as an Octave cell array. The second parameter is the visit ration V, which can be either a
vector (for single-class models) or a two-dimensional matrix (for multiple-class models).

Individual nodes in the network are structures build using the qnmknode function.

[Function File]Q = qnmknode ("m/m/m-fcfs", S)
[Function File]Q = qnmknode ("m/m/m-fcfs", S, m)
[Function File]Q = qnmknode ("m/m/1-lcfs-pr", S)
[Function File]Q = qnmknode ("-/g/1-ps", S)
[Function File]Q = qnmknode ("-/g/1-ps", S, s2)
[Function File]Q = qnmknode ("-/g/inf", S)
[Function File]Q = qnmknode ("-/g/inf", S, s2)

Creates a node; this function can be used together with qnsolve. It is possible to
create either single-class nodes (where there is only one customer class), or multiple-
class nodes (where the service time is given per-class). Furthermore, it is possible to
specify load-dependent service times.

INPUTS

S Average service time. S can be either a scalar, a row vector, a column
vector or a two-dimensional matrix.

• If S is a scalar, it is assumed to be a load-independent,
class-independent service time.

• If S is a column vector, then S(c) is assumed to the the load-
independent service time for class c customers.

• If S is a row vector, then S(n) is assumed to be the class-independent
service time at the node, when there are n requests.

• Finally, if S is a two-dimensional matrix, then S(c,n) is assumed to
be the class c service time when there are n requests at the node.

m Number of identical servers at the node. Default is m=1.

s2 Squared coefficient of variation for the service time. Default is 1.0.

The returned struct Q should be considered opaque to the client.

See also: qnsolve.

After the network has been defined, it is possible to solve it using the qnsolve function.
Note that this function is somewhat less efficient than those described in later sections, but
generally easier to use.

[Function File][U, R, Q, X] = qnsolve ("closed", N, QQ, V)
[Function File][U, R, Q, X] = qnsolve ("closed", N, QQ, V, Z)
[Function File][U, R, Q, X] = qnsolve ("open", lambda, QQ, V)
[Function File][U, R, Q, X] = qnsolve ("mixed", lambda, N, QQ, V)

General evaluator of QN models. Networks can be open, closed or mixed; single as
well as multiclass networks are supported.

• For closed networks, the following server types are supported: M/M/m–FCFS,
−/G/∞, −/G/1–LCFS-PR, −/G/1–PS and load-dependent variants.

Chapter 6: Queueing Networks 29

• For open networks, the following server types are supported: M/M/m–FCFS,
−/G/∞ and −/G/1–PS. General load-dependent nodes are not supported. Mul-
ticlass open networks do not support multiple server M/M/m nodes, but only
single server M/M/1–FCFS.

• For mixed networks, the following server types are supported: M/M/1–FCFS,
−/G/∞ and −/G/1–PS. General load-dependent nodes are not supported.

INPUTS

N Number of requests in the system for closed networks. For single-class
networks, N must be a scalar. For multiclass networks, N(c) is the
population size of closed class c.

lambda External arrival rate (scalar) for open networks. For single-class networks,
lambda must be a scalar. For multiclass networks, lambda(c) is the class
c overall arrival rate.

QQ List of queues in the network. This must be a cell array with N elements,
such that QQ{i} is a struct produced by the qnmknode function.

Z External delay ("think time") for closed networks. Default 0.

OUTPUTS

U If i is a FCFS node, then U(i) is the utilization of service center i. If i
is an IS node, then U(i) is the traffic intensity defined as X(i)*S(i).

R R(i) is the average response time of service center i.

Q Q(i) is the average number of customers in service center i.

X X(i) is the throughput of service center i.

Note that for multiclass networks, the computed results are per-class utilization,
response time, number of customers and throughput: U(c,k), R(c,k), Q(c,k),
X(c,k),

EXAMPLE

Let us consider a closed, multiclass network with C = 2 classes and K = 3 service center.
Let the population be M = (2, 1) (class 1 has 2 requests, and class 2 has 1 request). The
nodes are as follows:

• Node 1 is a M/M/1–FCFS node, with load-dependent service times. Service times are
class-independent, and are defined by the matrix [0.2 0.1 0.1; 0.2 0.1 0.1]. Thus,
S(1,2) = 0.2 means that service time for class 1 customers where there are 2 requests
in 0.2. Note that service times are class-independent;

• Node 2 is a −/G/1–PS node, with service times S12 = 0.4 for class 1, and S22 = 0.6 for
class 2 requests;

• Node 3 is a −/G/∞ node (delay center), with service times S13 = 1 and S23 = 2 for
class 1 and 2 respectively.

After defining the per-class visit count V such that V(c,k) is the visit count of class c
requests to service center k. We can define and solve the model as follows:

30 queueing

QQ = { qnmknode("m/m/m-fcfs", [0.2 0.1 0.1; 0.2 0.1 0.1]), \

qnmknode("-/g/1-ps", [0.4; 0.6]), \

qnmknode("-/g/inf", [1; 2]) };

V = [1 0.6 0.4; \

1 0.3 0.7];

N = [2 1];

[U R Q X] = qnsolve("closed", N, QQ, V);

6.3 Algorithms for Product-Form QNs

Product-form queueing networks fulfill the following assumptions:

• The network can consist of open and closed job classes.

• The following queueing disciplines are allowed: FCFS, PS, LCFS-PR and IS.

• Service times for FCFS nodes must be exponentially distributed and class-independent.
Service centers at PS, LCFS-PR and IS nodes can have any kind of service time dis-
tribution with a rational Laplace transform. Furthermore, for PS, LCFS-PR and IS
nodes, different classes of customers can have different service times.

• The service rate of an FCFS node is only allowed to depend on the number of jobs at
this node; in a PS, LCFS-PR and IS node the service rate for a particular job class can
also depend on the number of jobs of that class at the node.

• In open networks two kinds of arrival processes are allowed: i) the arrival process is
Poisson, with arrival rate λ which can depend on the number of jobs in the network.
ii) the arrival process consists of U independent Poisson arrival streams where the U
job sources are assigned to the U chains; the arrival rate can be load dependent.

6.3.1 Jackson Networks

Jackson networks satisfy the following conditions:

• There is only one job class in the network; the overall number of jobs in the system is
unlimited.

• There are N service centers in the network. Each service center may have Poisson
arrivals from outside the system. A job can leave the system from any node.

• Arrival rates as well as routing probabilities are independent from the number of nodes
in the network.

• External arrivals and service times at the service centers are exponentially distributed,
and in general can be load-dependent.

• Service discipline at each node is FCFS

We define the joint probability vector π(k1, k2, . . . kN) as the steady-state probability that
there are ki requests at service center i, for all i = 1, 2, . . . N . Jackson networks have the
property that the joint probability is the product of the marginal probabilities πi:

π(k1, k2, . . . kN) =
N∏
i=1

πi(ki)

where πi(ki) is the steady-state probability that there are ki requests at service center i.

Chapter 6: Queueing Networks 31

[Function File][U, R, Q, X] = qnjackson (lambda, S, P)
[Function File][U, R, Q, X] = qnjackson (lambda, S, P, m)
[Function File]pr = qnjackson (lambda, S, P, m, k)

With three or four input parameters, this function computes the steady-state occu-
pancy probabilities for a Jackson network. With five input parameters, this function
computes the steady-state probability pi(j) that there are k(j) requests at service
center j.

This function solves a subset of Jackson networks, with the following constraints:

• External arrival rates are load-independent.

• Service center i consists either of m(i) ≥ 1 identical servers with individual av-
erage service time S(i), or of an Infinite Server (IS) node.

INPUTS

lambda lambda(i) is the external arrival rate to service center i. lambda must
be a vector of length N , lambda(i) ≥ 0.

S S(i) is the average service time on service center i S must be a vector of
length N , S(i)>0.

P P(i,j) is the probability that a job which completes service at service
center i proceeds to service center j. P must be a matrix of size N ×N .

m m(i) is the number of servers at service center i. If m(i) < 1, service cen-
ter i is an infinite-server node. Otherwise, it is a regular FCFS queueing
center with m(i) servers. If this parameter is omitted, default is m(i) =

1 for all i. If this parameter is a scalar, it will be promoted to a vector
with the same size as lambda. Otherwise, m must be a vector of length
N .

k Compute the steady-state probability that there are k(i) requests at
service center i. k must have the same length as lambda, with k(i) ≥ 0.

OUTPUT

U If i is a FCFS node, then U(i) is the utilization of service center i. If i
is an IS node, then U(i) is the traffic intensity defined as X(i)*S(i).

R R(i) is the average response time of service center i.

Q Q(i) is the average number of customers in service center i.

X X(i) is the throughput of service center i.

pr pr(i) is the steady state probability that there are k(i) requests at
service center i.

See also: qnopen.

REFERENCES

This implementation is based on G. Bolch, S. Greiner, H. de Meer and K. Trivedi, Queue-
ing Networks and Markov Chains: Modeling and Performance Evaluation with Computer
Science Applications, Wiley, 1998, pp. 284–287.

32 queueing

6.3.2 The Convolution Algorithm

According to the BCMP theorem, the state probability of a closed single class queueing
network with K nodes and N requests can be expressed as:

π(k1, k2, . . . kK) =
1

G(N)

N∏
i=1

Fi(ki)

Here π(k1, k2, . . . kK) is the joint probability of having ki requests at node i, for all
i = 1, 2, . . .K.

The convolution algorithms computes the normalization constants G =
(G(0), G(1), . . . G(N)) for single-class, closed networks with N requests. The normalization
constants are returned as vector G=[G(1), G(2), ... G(N+1)] where G(i+1) is the value
of G(i) (remember that Octave uses 1-base vectors). The normalization constant can be
used to compute all performance measures of interest (utilization, average response time
and so on).

queueing implements the convolution algorithm, in the function qnconvolution and
qnconvolutionld. The first one supports single-station nodes, multiple-station nodes and
IS nodes. The second one supports networks with general load-dependent service centers.

[Function File][U, R, Q, X, G] = qnconvolution (N, S, V)
[Function File][U, R, Q, X, G] = qnconvolution (N, S, V, m)

This function implements the convolution algorithm for computing steady-state per-
formance measures of product-form, single-class closed queueing networks. Load-
independent service centers, multiple servers (M/M/m queues) and IS nodes are
supported. For general load-dependent service centers, use the qnconvolutionld

function instead.

INPUTS

N Number of requests in the system (N>0).

S S(k) is the average service time on center k (S(k) ≥ 0).

V V(k) is the visit count of service center k (V(k) ≥ 0).

m m(k) is the number of servers at center k. If m(k) < 1, center k is a delay
center (IS); if m(k) ≥ 1, center k it is a regular M/M/m queueing center
with m(k) identical servers. Default is m(k) = 1 for all k.

OUTPUT

U U(k) is the utilization of center k. For IS nodes, U(k) is the traffic
intensity.

R R(k) is the average response time of center k.

Q Q(k) is the average number of customers at center k.

X X(k) is the throughput of center k.

G Vector of normalization constants. G(n+1) contains the value of the nor-
malization constant with n requests G(n), n = 0, . . . , N .

See also: qnconvolutionld.

Chapter 6: Queueing Networks 33

EXAMPLE

The normalization constant G can be used to compute the steady-state probabilities for
a closed single class product-form Queueing Network with K nodes. Let k=[k1, k2, . . . kK]
be a valid population vector. Then, the steady-state probability p(i) to have k(i) requests
at service center i can be computed as:

pi(ki) =
(ViSi)

ki

G(K)
(G(K − ki)− ViSiG(K − ki − 1)) , i = 1, 2, . . .K

k = [1 2 0];

K = sum(k); # Total population size

S = [1/0.8 1/0.6 1/0.4];

m = [2 3 1];

V = [1 .667 .2];

[U R Q X G] = qnconvolution(K, S, V, m);

p = [0 0 0]; # initialize p

Compute the probability to have k(i) jobs at service center i

for i=1:3

p(i) = (V(i)*S(i))^k(i) / G(K+1) * \

(G(K-k(i)+1) - V(i)*S(i)*G(K-k(i)));

printf("k(%d)=%d prob=%f\n", i, k(i), p(i));

endfor

a k(1)=1 prob=0.17975

a k(2)=2 prob=0.48404

a k(3)=0 prob=0.52779

NOTE

For a network with K service centers and N requests, this implementation of the con-
volution algorithm has time and space complexity O(NK).

REFERENCES

Jeffrey P. Buzen, Computational Algorithms for Closed Queueing Networks with Expo-
nential Servers, Communications of the ACM, volume 16, number 9, september 1973, pp.
527–531. http://doi.acm.org/10.1145/362342.362345

This implementation is based on G. Bolch, S. Greiner, H. de Meer and K. Trivedi, Queue-
ing Networks and Markov Chains: Modeling and Performance Evaluation with Computer
Science Applications, Wiley, 1998, pp. 313–317.

[Function File][U, R, Q, X, G] = qnconvolutionld (N, S, V)
This function implements the convolution algorithm for product-form, single-class
closed queueing networks with general load-dependent service centers.

This function computes steady-state performance measures for single-class, closed
networks with load-dependent service centers using the convolution algorithm; the
normalization constants are also computed. The normalization constants are returned
as vector G=[G(1), ..., G(N+1)] where G(i+1) is the value of G(i).

INPUTS

N Number of requests in the system (N>0).

http://doi.acm.org/10.1145/362342.362345

34 queueing

S S(k,n) is the mean service time at center k where there are n requests,
1 ≤ n ≤ N . S(k,n) = 1/µk,n, where µk,n is the service rate of center k
when there are n requests.

V V(k) is the visit count of service center k (V(k) ≥ 0). The length of V
is the number of servers K in the network.

OUTPUT

U U(k) is the utilization of center k.

R R(k) is the average response time at center k.

Q Q(k) is the average number of customers in center k.

X X(k) is the throughput of center k.

G Normalization constants (vector). G(n+1) corresponds to G(n), as array
indexes in Octave start from 1.

See also: qnconvolution.

REFERENCES

Herb Schwetman, Some Computational Aspects of Queueing Network Mod-
els, Technical Report CSD-TR-354, Department of Computer Sciences, Purdue
University, feb, 1981 (revised). http://www.cs.purdue.edu/research/technical_

reports/1980/TR%2080-354.pdf

M. Reiser, H. Kobayashi, On The Convolution Algorithm for Separable Queueing
Networks, In Proceedings of the 1976 ACM SIGMETRICS Conference on Computer
Performance Modeling Measurement and Evaluation (Cambridge, Massachusetts, United
States, March 29–31, 1976). SIGMETRICS ’76. ACM, New York, NY, pp. 109–117.
http://doi.acm.org/10.1145/800200.806187

This implementation is based on G. Bolch, S. Greiner, H. de Meer and K. Trivedi, Queue-
ing Networks and Markov Chains: Modeling and Performance Evaluation with Computer
Science Applications, Wiley, 1998, pp. 313–317. Function qnconvolutionld is slightly dif-
ferent from the version described in Bolch et al. because it supports general load-dependent
centers (while the version in the book does not). The modification is in the definition of
function F() in qnconvolutionld which has been made similar to function fi defined in
Schwetman, Some Computational Aspects of Queueing Network Models.

6.3.3 Open networks

[Function File][U, R, Q, X] = qnopensingle (lambda, S, V)
[Function File][U, R, Q, X] = qnopensingle (lambda, S, V, m)

Analyze open, single class BCMP queueing networks.

This function works for a subset of BCMP single-class open networks satisfying the
following properties:

• The allowed service disciplines at network nodes are: FCFS, PS, LCFS-PR, IS
(infinite server);

• Service times are exponentially distributed and load-independent;

http://www.cs.purdue.edu/research/technical_reports/1980/TR%2080-354.pdf
http://www.cs.purdue.edu/research/technical_reports/1980/TR%2080-354.pdf
http://doi.acm.org/10.1145/800200.806187

Chapter 6: Queueing Networks 35

• Service center i can consist of m(i) ≥ 1 identical servers.

• Routing is load-independent

INPUTS

lambda Overall external arrival rate (lambda>0).

S S(k) is the average service time at center i (S(k)>0).

V V(k) is the average number of visits to center k (V(k) ≥ 0).

m m(k) is the number of servers at center i. If m(k) < 1, then service center
k is a delay center (IS); otherwise it is a regular queueing center with
m(k) servers. Default is m(k) = 1 for each k.

OUTPUTS

U If k is a queueing center, U(k) is the utilization of center k. If k is an IS
node, then U(k) is the traffic intensity defined as X(k)*S(k).

R R(k) is the average response time of center k.

Q Q(k) is the average number of requests at center k.

X X(k) is the throughput of center k.

See also: qnopen,qnclosed,qnvisits.

From the results computed by this function, it is possible to derive other quantities of
interest as follows:

• System Response Time: The overall system response time can be computed as Rs =∑K
i=1 ViRi

• Average number of requests: The average number of requests in the system can be
computed as: Qs =

∑K
i=1Q(i)

EXAMPLE

lambda = 3;

V = [16 7 8];

S = [0.01 0.02 0.03];

[U R Q X] = qnopensingle(lambda, S, V);

R_s = dot(R,V) # System response time

N = sum(Q) # Average number in system

a R_s = 1.4062

a N = 4.2186

REFERENCES

G. Bolch, S. Greiner, H. de Meer and K. Trivedi, Queueing Networks and Markov Chains:
Modeling and Performance Evaluation with Computer Science Applications, Wiley, 1998.

[Function File][U, R, Q, X] = qnopenmulti (lambda, S, V)
[Function File][U, R, Q, X] = qnopenmulti (lambda, S, V, m)

Exact analysis of open, multiple-class BCMP networks. The network can be made of
single-server queueing centers (FCFS, LCFS-PR or PS) or delay centers (IS). This
function assumes a network with K service centers and C customer classes.

INPUTS

36 queueing

lambda lambda(c) is the external arrival rate of class c customers
(lambda(c)>0).

S S(c,k) is the mean service time of class c customers on the service center
k (S(c,k)>0). For FCFS nodes, average service times must be class-
independent.

V V(c,k) is the average number of visits of class c customers to service
center k (V(c,k) ≥ 0).

m m(k) is the number of servers at service center k. Valid values are m(k)

< 1 to denote a delay center (−/G/∞), and m(k)==1 to denote a sin-
gle server queueing center (M/M/1–FCFS, −/G/1–LCFS-PR or −/G/1–
PS).

OUTPUTS

U If k is a queueing center, then U(c,k) is the class c utilization of center
k. If k is an IS node, then U(c,k) is the class c traffic intensity defined
as X(c,k)*S(c,k).

R R(c,k) is the class c response time at center k. The system response
time for class c requests can be computed as dot(R, V, 2).

Q Q(c,k) is the average number of class c requests at center k. The average
number of class c requests in the system Qc can be computed as Qc =

sum(Q, 2)

X X(c,k) is the class c throughput at center k.

See also: qnopen,qnopensingle,qnvisits.

REFERENCES

Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik, Quan-
titative System Performance: Computer System Analysis Using Queueing Network Models,
Prentice Hall, 1984. http://www.cs.washington.edu/homes/lazowska/qsp/. In particu-
lar, see section 7.4.1 ("Open Model Solution Techniques").

6.3.4 Closed Networks

[Function File][U, R, Q, X, G] = qnclosedsinglemva (N, S, V)
[Function File][U, R, Q, X, G] = qnclosedsinglemva (N, S, V, m)
[Function File][U, R, Q, X, G] = qnclosedsinglemva (N, S, V, m, Z)

Analyze closed, single class queueing networks using the exact Mean Value Analysis
(MVA) algorithm. The following queueing disciplines are supported: FCFS, LCFS-
PR, PS and IS (Infinite Server). This function supports fixed-rate service centers or
multiple server nodes. For general load-dependent service centers, use the function
qnclosedsinglemvald instead.

Additionally, the normalization constant G(n), n = 0, . . . , N is computed; G(n) can
be used in conjunction with the BCMP theorem to compute steady-state probabilities.

INPUTS

http://www.cs.washington.edu/homes/lazowska/qsp/

Chapter 6: Queueing Networks 37

N Population size (number of requests in the system, N ≥ 0). If N == 0, this
function returns U = R = Q = X = 0

S S(k) is the mean service time on server k (S(k)>0).

V V(k) is the average number of visits to service center k (V(k) ≥ 0).

Z External delay for customers (Z ≥ 0). Default is 0.

m m(k) is the number of servers at center k (if m is a scalar, all centers
have that number of servers). If m(k) < 1, center k is a delay center (IS);
otherwise it is a regular queueing center (FCFS, LCFS-PR or PS) with
m(k) servers. Default is m(k) = 1 for all k (each service center has a
single server).

OUTPUTS

U If k is a FCFS, LCFS-PR or PS node (m(k) == 1), then U(k) is the
utilization of center k. If k is an IS node (m(k) < 1), then U(k) is the
traffic intensity defined as X(k)*S(k).

R R(k) is the response time at center k. The system response time Rsys
can be computed as Rsys = N/Xsys - Z

Q Q(k) is the average number of requests at center k. The number of
requests in the system can be computed either as sum(Q), or using the
formula N-Xsys*Z .

X X(k) is the throughput of center k. The system throughput Xsys can be
computed as Xsys = X(1) / V(1)

G Normalization constants. G(n+1) corresponds to the value of the normal-
ization constant G(n), n = 0, . . . , N as array indexes in Octave start from
1. G(n) can be used in conjunction with the BCMP theorem to compute
steady-state probabilities.

See also: qnclosedsinglemvald.

From the results provided by this function, it is possible to derive other quantities of
interest as follows:

EXAMPLE

S = [0.125 0.3 0.2];

V = [16 10 5];

N = 20;

m = ones(1,3);

Z = 4;

[U R Q X] = qnclosedsinglemva(N,S,V,m,Z);

X_s = X(1)/V(1); # System throughput

R_s = dot(R,V); # System response time

printf("\t Util Qlen RespT Tput\n");

printf("\t-------- -------- -------- --------\n");

for k=1:length(S)

printf("Dev%d\t%8.4f %8.4f %8.4f %8.4f\n", k, U(k), Q(k), R(k), X(k));

38 queueing

endfor

printf("\nSystem\t %8.4f %8.4f %8.4f\n\n", N-X_s*Z, R_s, X_s);

REFERENCES

M. Reiser and S. S. Lavenberg, Mean-Value Analysis of Closed Multichain
Queuing Networks, Journal of the ACM, vol. 27, n. 2, April 1980, pp. 313–322.
http://doi.acm.org/10.1145/322186.322195

This implementation is described in R. Jain , The Art of Computer Systems Performance
Analysis, Wiley, 1991, p. 577. Multi-server nodes are treated according to G. Bolch, S.
Greiner, H. de Meer and K. Trivedi, Queueing Networks and Markov Chains: Modeling
and Performance Evaluation with Computer Science Applications, Wiley, 1998, Section
8.2.1, "Single Class Queueing Networks".

[Function File][U, R, Q, X] = qnclosedsinglemvald (N, S, V)
[Function File][U, R, Q, X] = qnclosedsinglemvald (N, S, V, Z)

Exact MVA algorithm for closed, single class queueing networks with load-dependent
service centers. This function supports FCFS, LCFS-PR, PS and IS nodes. For
networks with only fixed-rate service centers and multiple-server nodes, the function
qnclosedsinglemva is more efficient.

INPUTS

N Population size (number of requests in the system, N ≥ 0). If N == 0, this
function returns U = R = Q = X = 0

S S(k,n) is the mean service time at center k where there are n requests,
1 ≤ n ≤ N . S(k,n) = 1/µk,n, where µk,n is the service rate of center k
when there are n requests.

V V(k) is the average number of visits to service center k (V(k) ≥ 0).

Z external delay ("think time", Z ≥ 0); default 0.

OUTPUTS

U U(k) is the utilization of service center k. The utilization is defined as
the probability that service center k is not empty, that is, Uk = 1−πk(0)
where πk(0) is the steady-state probability that there are 0 jobs at service
center k.

R R(k) is the response time on service center k.

Q Q(k) is the average number of requests in service center k.

X X(k) is the throughput of service center k.

REFERENCES

M. Reiser and S. S. Lavenberg, Mean-Value Analysis of Closed Multichain
Queuing Networks, Journal of the ACM, vol. 27, n. 2, April 1980, pp. 313–322.
http://doi.acm.org/10.1145/322186.322195

This implementation is described in G. Bolch, S. Greiner, H. de Meer and K. Trivedi,
Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Com-
puter Science Applications, Wiley, 1998, Section 8.2.4.1, “Networks with Load-Dependent
Service: Closed Networks”.

http://doi.acm.org/10.1145/322186.322195
http://doi.acm.org/10.1145/322186.322195

Chapter 6: Queueing Networks 39

[Function File][U, R, Q, X] = qncmva (N, S, Sld, V)
[Function File][U, R, Q, X] = qncmva (N, S, Sld, V, Z)

Implementation of the Conditional MVA (CMVA) algorithm, a numerically stable
variant of MVA for load-dependent servers. CMVA is described in G. Casale, A Note
on Stable Flow-Equivalent Aggregation in Closed Networks. The network is made
of M service centers and a delay center. Servers 1, . . . ,M − 1 are load-independent;
server M is load-dependent.

INPUTS

N Population size (number of requests in the system, N ≥ 0). If N == 0, this
function returns U = R = Q = X = 0

S S(k) is the mean service time on server k = 1, . . . ,M − 1 (S(k) > 0).

Sld Sld(n) is the mean service time on server M when there are n requests,
n = 1, . . . , N . Sld(n) = 1/µ(n), where µ(n) is the service rate at center
N when there are n requests.

V V(k) is the average number of visits to service center k = 1, . . . ,M (V(k)
≥ 0).

Z External delay for customers (Z ≥ 0). Default is 0.

OUTPUTS

U U(k) is the utilization of center k = 1, . . . ,M

R R(k) is the response time at center k = 1, . . . ,M . The system response
time Rsys can be computed as Rsys = N/Xsys - Z

Q Q(k) is the average number of requests at center k = 1, . . . ,M .

X X(k) is the throughput of center k = 1, . . . ,M .

REFERENCES

G. Casale. A note on stable flow-equivalent aggregation in closed networks. Queueing
Syst. Theory Appl., 60:193202, December 2008.

[Function File][U, R, Q, X] = qnclosedsinglemvaapprox (N, S, V)
[Function File][U, R, Q, X] = qnclosedsinglemvaapprox (N, S, V, m)
[Function File][U, R, Q, X] = qnclosedsinglemvaapprox (N, S, V, m, Z)
[Function File][U, R, Q, X] = qnclosedsinglemvaapprox (N, S, V, m, Z, tol)
[Function File][U, R, Q, X] = qnclosedsinglemvaapprox (N, S, V, m, Z, tol,

iter_max)
Analyze closed, single class queueing networks using the Approximate Mean Value
Analysis (MVA) algorithm. This function is based on approximating the number of
customers seen at center k when a new request arrives as Qk(N)× (N − 1)/N . This
function only handles single-server and delay centers; if your network contains general
load-dependent service centers, use the function qnclosedsinglemvald instead.

INPUTS

N Population size (number of requests in the system, N > 0).

S S(k) is the mean service time on server k (S(k)>0).

40 queueing

V V(k) is the average number of visits to service center k (V(k) ≥ 0).

m m(k) is the number of servers at center k (if m is a scalar, all centers
have that number of servers). If m(k) < 1, center k is a delay center (IS);
if m(k) == 1, center k is a regular queueing center (FCFS, LCFS-PR or
PS) with one server (default). This function does not support multiple
server nodes (m(k) > 1).

Z External delay for customers (Z ≥ 0). Default is 0.

tol Stopping tolerance. The algorithm stops when the maximum relative
difference between the new and old value of the queue lengths Q becomes
less than the tolerance. Default is 10−5.

iter max Maximum number of iterations (iter_max>0. The function aborts if
convergenge is not reached within the maximum number of iterations.
Default is 100.

OUTPUTS

U If k is a FCFS, LCFS-PR or PS node (m(k) == 1), then U(k) is the
utilization of center k. If k is an IS node (m(k) < 1), then U(k) is the
traffic intensity defined as X(k)*S(k).

R R(k) is the response time at center k. The system response time Rsys
can be computed as Rsys = N/Xsys - Z

Q Q(k) is the average number of requests at center k. The number of
requests in the system can be computed either as sum(Q), or using the
formula N-Xsys*Z .

X X(k) is the throughput of center k. The system throughput Xsys can be
computed as Xsys = X(1) / V(1)

See also: qnclosedsinglemva,qnclosedsinglemvald.

REFERENCES

This implementation is based on Edward D. Lazowska, John Zahorjan, G.
Scott Graham, and Kenneth C. Sevcik, Quantitative System Performance: Com-
puter System Analysis Using Queueing Network Models, Prentice Hall, 1984.
http://www.cs.washington.edu/homes/lazowska/qsp/. In particular, see section
6.4.2.2 ("Approximate Solution Techniques").

[Function File][U, R, Q, X] = qnclosedmultimva (N, S)
[Function File][U, R, Q, X] = qnclosedmultimva (N, S, V)
[Function File][U, R, Q, X] = qnclosedmultimva (N, S, V, m)
[Function File][U, R, Q, X] = qnclosedmultimva (N, S, V, m, Z)
[Function File][U, R, Q, X] = qnclosedmultimva (N, S, P)
[Function File][U, R, Q, X] = qnclosedmultimva (N, S, P, m)

Analyze closed, multiclass queueing networks with K service centers and C indepen-
dent customer classes (chains) using the Mean Value Analysys (MVA) algorithm.

Queueing policies at service centers can be any of the following:

http://www.cs.washington.edu/homes/lazowska/qsp/

Chapter 6: Queueing Networks 41

FCFS (First-Come-First-Served) customers are served in order of arrival; mul-
tiple servers are allowed. For this kind of queueing discipline, average
service times must be class-independent.

PS (Processor Sharing) customers are served in parallel by a single server,
each customer receiving an equal share of the service rate.

LCFS-PR (Last-Come-First-Served, Preemptive Resume) customers are served in
reverse order of arrival by a single server and the last arrival preempts
the customer in service who will later resume service at the point of
interruption.

IS (Infinite Server) customers are delayed independently of other customers
at the service center (there is effectively an infinite number of servers).

Note: If this function is called specifying the visit ratios V, class switching
is not allowed.

If this function is called specifying the routing probability matrix P, then
class switching is allowed; however, in this case all nodes are restricted to
be fixed rate service centers or delay centers: multiple-server and general
load-dependent centers are not supported.

INPUTS

N N(c) is the number of class c requests in the system; N(c) ≥ 0. If class c
has no requests (N(c) = 0), then U(c,k) = R(c,k) = Q(c,k) = X(c,k)

= 0 for all k.

S S(c,k) is the mean service time for class c customers at center k (S(c,k)
≥ 0). If service time at center k is class-dependent, then center #mathk
is assumed to be of type −/G/1–PS (Processor Sharing). If center k is a
FCFS node (m(k)>1), then the service times must be class-independent.

V V(c,k) is the average number of visits of class c customers to service
center k; V(c,k) ≥ 0, default is 1. If you pass this parameter, no class
switching is not allowed

P P(r,i,s,j) is the probability that a class r job completing service at
center i is routed to center j as a class s job. If you pass this parameter,
class switching is allowed.

m If m(k)<1, then center k is assumed to be a delay center (IS node
−/G/∞). If m(k)==1, then service center k is a regular queueing center
(M/M/1–FCFS, −/G/1–LCFS-PR or −/G/1–PS). Finally, if m(k)>1,
center k is a M/M/m–FCFS center with m(k) identical servers. Default
is m(k)=1 for each k.

Z Z(c) is the class c external delay (think time); Z(c) ≥ 0. Default is 0.

OUTPUTS

U If k is a FCFS, LCFS-PR or PS node, then U(c,k) is the class c utilization
at center k. If k is an IS node, then U(c,k) is the class c traffic intensity
at center k, defined as U(c,k) = X(c,k)*S(c,k).

42 queueing

R R(c,k) is the class c response time at center k. The total class c system
response time can be computed as dot(R, V, 2).

Q Q(c,k) is the average number of class c requests at center k. The total
number of requests at center k is sum(Q(:,k)). The total number of
class c requests in the system is sum(Q(c,:)).

X X(c,k) is the class c throughput at center k. The class c system through-
put can be computed as X(c,1) / V(c,1).

See also: qnclosed, qnclosedmultimvaapprox.

NOTE

Given a network with K service centers, C job classes and population vector N =
(N1, N2, . . . NC), the MVA algorithm requires space O(C

∏
i(Ni+1)). The time complexity

is O(CK
∏
i(Ni+1)). This implementation is slightly more space-efficient (see details in the

code). While the space requirement can be mitigated by using some optimizations, the time
complexity can not. If you need to analyze large closed networks you should consider the
qnclosedmultimvaapprox function, which implements the approximate MVA algorithm.
Note however that qnclosedmultimvaapprox will only provide approximate results.

REFERENCES

M. Reiser and S. S. Lavenberg, Mean-Value Analysis of Closed Multichain
Queuing Networks, Journal of the ACM, vol. 27, n. 2, April 1980, pp. 313–322.
http://doi.acm.org/10.1145/322186.322195

This implementation is based on G. Bolch, S. Greiner, H. de Meer and K. Trivedi,
Queueing Networks and Markov Chains: Modeling and Performance Evaluation
with Computer Science Applications, Wiley, 1998 and Edward D. Lazowska, John
Zahorjan, G. Scott Graham, and Kenneth C. Sevcik, Quantitative System Performance:
Computer System Analysis Using Queueing Network Models, Prentice Hall, 1984.
http://www.cs.washington.edu/homes/lazowska/qsp/. In particular, see section
7.4.2.1 ("Exact Solution Techniques").

[Function File][U, R, Q, X] = qnclosedmultimvaapprox (N, S, V)
[Function File][U, R, Q, X] = qnclosedmultimvaapprox (N, S, V, m)
[Function File][U, R, Q, X] = qnclosedmultimvaapprox (N, S, V, m, Z)
[Function File][U, R, Q, X] = qnclosedmultimvaapprox (N, S, V, m, Z, tol)
[Function File][U, R, Q, X] = qnclosedmultimvaapprox (N, S, V, m, Z, tol,

iter_max)
Analyze closed, multiclass queueing networks with K service centers and C customer
classes using the approximate Mean Value Analysys (MVA) algorithm.

This implementation uses Bard and Schweitzer approximation. It is based on the
assumption that

Qi(N− 1c) ≈
n− 1

n
Qi(N)

where N is a valid population mix, N − 1c is the population mix N with one class c
customer removed, and n =

∑
cNc is the total number of requests.

This implementation works for networks made of infinite server (IS) nodes and single-
server nodes only.

http://doi.acm.org/10.1145/322186.322195
http://www.cs.washington.edu/homes/lazowska/qsp/

Chapter 6: Queueing Networks 43

INPUTS

N N(c) is the number of class c requests in the system (N(c)>0).

S S(c,k) is the mean service time for class c customers at center k (S(c,k)
≥ 0).

V V(c,k) is the average number of visits of class c requests to center k
(V(c,k) ≥ 0).

m m(k) is the number of servers at service center k. If m(k) < 1, then
the service center k is assumed to be a delay center (IS). If m(k) == 1,
service center k is a regular queueing center (FCFS, LCFS-PR or PS)
with a single server node. If omitted, each service center has a single
server. Note that multiple server nodes are not supported.

Z Z(c) is the class c external delay. Default is 0.

tol Stopping tolerance (tol>0). The algorithm stops if the queue length
computed on two subsequent iterations are less than tol. Default is 10−5.

iter max Maximum number of iterations (iter_max>0. The function aborts if
convergenge is not reached within the maximum number of iterations.
Default is 100.

OUTPUTS

U If k is a FCFS, LCFS-PR or PS node, then U(c,k) is the utilization of
class c requests on service center k. If k is an IS node, then U(c,k) is the
class c traffic intensity at device k, defined as U(c,k) = X(c)*S(c,k)

R R(c,k) is the response time of class c requests at service center k.

Q Q(c,k) is the average number of class c requests at service center k.

X X(c,k) is the class c throughput at service center k.

See also: qnclosed.

REFERENCES

Y. Bard, Some Extensions to Multiclass Queueing Network Analysis, proc. 4th Int.
Symp. on Modelling and Performance Evaluation of Computer Systems, feb. 1979, pp.
51–62.

P. Schweitzer, Approximate Analysis of Multiclass Closed Networks of Queues, Proc.
Int. Conf. on Stochastic Control and Optimization, jun 1979, pp. 25–29.

This implementation is based on Edward D. Lazowska, John Zahorjan, G.
Scott Graham, and Kenneth C. Sevcik, Quantitative System Performance: Com-
puter System Analysis Using Queueing Network Models, Prentice Hall, 1984.
http://www.cs.washington.edu/homes/lazowska/qsp/. In particular, see section
7.4.2.2 ("Approximate Solution Techniques"). This implementation is slightly different
from the one described above, as it computes the average response times R instead of the
residence times.

http://www.cs.washington.edu/homes/lazowska/qsp/

44 queueing

6.3.5 Mixed Networks

[Function File][U, R, Q, X] = qnmix (lambda, N, S, V, m)
Solution of mixed queueing networks through MVA. The network consists ofK service
centers (single-server or delay centers) and C independent customer chains. Both open
and closed chains are possible. lambda is the vector of per-chain arrival rates (open
classes); N is the vector of populations for closed chains.

Note: In this implementation class switching is not allowed. Each cus-
tomer class must correspond to an independent chain.

If the network is made of open or closed classes only, then this function calls
qnopenmulti or qnclosedmultimva respectively, and prints a warning message.

INPUTS

lambda
N For each customer chain c:

• if c is a closed chain, then N(c)>0 is the number of class c requests
and lambda(c) must be zero;

• If c is an open chain, lambda(c)>0 is the arrival rate of class c
requests and N(c) must be zero;

For each c, the following must hold:

(lambda(c)>0 && N(c)==0) || (lambda(c)==0 && N(c)>0)

which means that either lambda(c) is nonzero and N(n) is zero, or the
other way around. If for some c, lambda(c) 6= 0 and N(c) 6= 0, an error
is reported and this function aborts.

S S(c,k) is the mean service time for class c customers on service center k,
S(c,k) ≥ 0. For FCFS nodes, service times must be class-independent.

V V(c,k) is the average number of visits of class c customers to service
center k (V(c,k) ≥ 0).

m m(k) is the number of servers at service center k. Only single-server
(m(k)==1) or IS (Infinite Server) nodes (m(k)<1) are supported. If omit-
ted, each service center is assumed to have a single server. Queueing
discipline for single-server nodes can be FCFS, PS or LCFS-PR.

OUTPUTS

U U(c,k) is the utilization of class c requests on service center k.

R R(c,k) is the response time of class c requests on service center k.

Q Q(c,k) is the average number of class c requests on service center k.

X X(c,k) is the class c throughput on service center k.

See also: qnclosedmultimva, qnopenmulti.

REFERENCES

Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik, Quan-
titative System Performance: Computer System Analysis Using Queueing Network Models,

Chapter 6: Queueing Networks 45

Prentice Hall, 1984. http://www.cs.washington.edu/homes/lazowska/qsp/. In particu-
lar, see section 7.4.3 ("Mixed Model Solution Techniques"). Note that in this function we
compute the mean response time R instead of the mean residence time as in the reference.

Herb Schwetman, Implementing the Mean Value Algorithm for the Solu-
tion of Queueing Network Models, Technical Report CSD-TR-355, Depart-
ment of Computer Sciences, Purdue University, feb 15, 1982, available at
http://www.cs.purdue.edu/research/technical_reports/1980/TR%2080-355.pdf

6.4 Algorithms for non Product-Form QNs

[Function File][U, R, Q, X] = qnmvablo (N, S, M, P)
MVA algorithm for closed queueing networks with blocking. qnmvablo computes
approximate utilization, response time and mean queue length for closed, single class
queueing networks with blocking.

INPUTS

N population size, i.e., number of requests in the system. N must be strictly
greater than zero, and less than the overall network capacity: 0 < N <

sum(M).

S Average service time. S(i) is the average service time requested on server
i (S(i) > 0).

M Server capacity. M(i) is the capacity of service center i. The capacity
is the maximum number of requests in a service center, including the
request currently in service (M(i) ≥ 1).

P P(i,j) is the probability that a request which completes service at server
i will be transferred to server j.

OUTPUTS

U U(i) is the utilization of service center i.

R R(i) is the average response time of service center i.

Q Q(i) is the average number of requests in service center i (including the
request in service).

X X(i) is the throughput of service center i.

See also: qnopen, qnclosed.

REFERENCES

Ian F. Akyildiz, Mean Value Analysis for Blocking Queueing Networks, IEEE
Transactions on Software Engineering, vol. 14, n. 2, april 1988, pp. 418–428.
http://dx.doi.org/10.1109/32.4663

[Function File][U, R, Q, X] = qnmarkov (lambda, S, C, P)
[Function File][U, R, Q, X] = qnmarkov (lambda, S, C, P, m)
[Function File][U, R, Q, X] = qnmarkov (N, S, C, P)

http://www.cs.washington.edu/homes/lazowska/qsp/
http://www.cs.purdue.edu/research/technical_reports/1980/TR%2080-355.pdf
http://dx.doi.org/10.1109/32.4663

46 queueing

[Function File][U, R, Q, X] = qnmarkov (N, S, C, P, m)
Compute utilization, response time, average queue length and throughput for open
or closed queueing networks with finite capacity. Blocking type is Repetitive-Service
(RS). This function explicitly generates and solve the underlying Markov chain, and
thus might require a large amount of memory.

More specifically, networks which can me analyzed by this function have the following
properties:

• There exists only a single class of customers.

• The network has K service centers. Center i has mi > 0 servers, and has a total
(finite) capacity of Ci ≥ mi which includes both buffer space and servers. The
buffer space at service center i is therefore Ci −mi.

• The network can be open, with external arrival rate to center i equal to λi, or
closed with fixed population size N . For closed networks, the population size N
must be strictly less than the network capacity: N <

∑
iCi.

• Average service times are load-independent.

• Pij is the probability that requests completing execution at center i are trans-
ferred to center j, i 6= j. For open networks, a request may leave the system
from any node i with probability 1−

∑
j Pij.

• Blocking type is Repetitive-Service (RS). Service center j is saturated if the
number of requests is equal to its capacity C_j. Under the RS blocking discipline,
a request completing service at center i which is being transferred to a saturated
server j is put back at the end of the queue of i and will receive service again.
Center i then processes the next request in queue. External arrivals to a saturated
servers are dropped.

INPUTS

lambda
N If the first argument is a vector lambda, it is considered to be the external

arrival rate lambda(i) ≥ 0 to service center i of an open network. If the
first argument is a scalar, it is considered as the population size N of
a closed network; in this case N must be strictly less than the network
capacity: N < sum(C).

S S(i) is the average service time at service center i

C C(i) is the Capacity of service center i. The capacity includes both the
buffer and server space m(i). Thus the buffer space is C(i)-m(i).

P P(i,j) is the transition probability from service center i to service center
j.

m m(i) is the number of servers at service center i. Note that m(i) ≥ C(i)

for each i. If m is omitted, all service centers are assumed to have a single
server (m(i) = 1 for all i).

OUTPUTS

U U(i) is the utilization of service center i.

Chapter 6: Queueing Networks 47

R R(i) is the response time on service center i.

Q Q(i) is the average number of customers in the service center i, including
the request in service.

X X(i) is the throughput of service center i.

Note:

The space complexity of this implementation is O(
∏K
i=1(Ci + 1)2). The

time complexity is dominated by the time needed to solve a linear system
with

∏K
i=1(Ci + 1) unknowns.

6.5 Bounds on performance

[Function File][Xu, Rl] = qnopenab (lambda, D)
Compute Asymptotic Bounds for single-class, open Queueing Networks withK service
centers.

INPUTS

lambda overall arrival rate to the system (scalar). Abort if lambda ≤ 0

D D(k) is the service demand at center k. The service demand vector D
must be nonempty, and all demands must be nonnegative (D(k) ≥ 0 for
all k).

OUTPUTS

Xu Upper bound on the system throughput.

Rl Lower bound on the system response time.

See also: qnopenbsb.

REFERENCES

Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik, Quan-
titative System Performance: Computer System Analysis Using Queueing Network Models,
Prentice Hall, 1984. http://www.cs.washington.edu/homes/lazowska/qsp/. In particu-
lar, see section 5.2 ("Asymptotic Bounds").

[Function File][Xl, Xu, Rl, Ru] = qnclosedab (N, D)
[Function File][Xl, Xu, Rl, Ru] = qnclosedab (N, D, Z)

Compute Asymptotic Bounds for single-class, closed Queueing Networks with K ser-
vice centers.

INPUTS

N number of requests in the system (scalar, N>0).

D D(k) is the service demand of service center k, D(k) ≥ 0.

Z external delay (think time, scalar, Z ≥ 0). If omitted, it is assumed to
be zero.

OUTPUTS

http://www.cs.washington.edu/homes/lazowska/qsp/

48 queueing

Xl
Xu Lower and upper bound on the system throughput.

Rl
Ru Lower and upper bound on the system response time.

See also: qnclosedbsb, qnclosedgb, qnclosedpb.

REFERENCES

Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik, Quanti-
tative System Performance: Computer System Analysis Using Queueing Network Models,
Prentice Hall, 1984. http://www.cs.washington.edu/homes/lazowska/qsp/. In particu-
lar, see section 5.2 ("Asymptotic Bounds").

[Function File][Xu, Rl, Ru] = qnopenbsb (lambda, D)
Compute Balanced System Bounds for single-class, open Queueing Networks with K
service centers.

INPUTS

lambda overall arrival rate to the system (scalar). Abort if lambda < 0

D D(k) is the service demand at center k. The service demand vector D
must be nonempty, and all demands must be nonnegative (D(k) ≥ 0 for
all k).

OUTPUTS

Xl Lower bound on the system throughput.

Rl
Ru Lower and upper bound on the system response time.

See also: qnopenab.

REFERENCES

Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik, Quan-
titative System Performance: Computer System Analysis Using Queueing Network Models,
Prentice Hall, 1984. http://www.cs.washington.edu/homes/lazowska/qsp/. In particu-
lar, see section 5.4 ("Balanced Systems Bounds").

[Function File][Xl, Xu, Rl, Ru] = qnclosedbsb (N, D)
[Function File][Xl, Xu, Rl, Ru] = qnclosedbsb (N, D, Z)

Compute Balanced System Bounds for single-class, closed Queueing Networks with
K service centers.

INPUTS

N number of requests in the system (scalar).

D D(k) is the service demand at center k; K(k) ≥ 0.

Z external delay (think time, scalar, Z ≥ 0). If omitted, it is assumed to
be zero.

OUTPUTS

http://www.cs.washington.edu/homes/lazowska/qsp/
http://www.cs.washington.edu/homes/lazowska/qsp/

Chapter 6: Queueing Networks 49

Xl
Xu Lower and upper bound on the system throughput.

Rl
Ru Lower and upper bound on the system response time.

See also: qnclosedab, qnclosedgb, qnclosedpb.

[Function File][Xl, Xu] = qnclosedpb (N, D)
Compute PB Bounds (C. H. Hsieh and S. Lam, 1987) for single-class, closed Queueing
Networks with K service centers.

INPUTS

N number of requests in the system (scalar). Must be N > 0.

D D(k) is the service demand of service center k. Must be D(k) ≥ 0 for all
k.

Z external delay (think time, scalar). If omitted, it is assumed to be zero.
Must be Z ≥ 0.

OUTPUTS

Xl
Xu Lower and upper bounds on the system throughput.

See also: qnclosedab, qbclosedbsb, qnclosedgb.

REFERENCES

The original paper describing PB Bounds is C. H. Hsieh and S. Lam, Two classes of
performance bounds for closed queueing networks, PEVA, vol. 7, n. 1, pp. 3–30, 1987

This function implements the non-iterative variant described in G. Casale, R. R. Muntz,
G. Serazzi, Geometric Bounds: a Non-Iterative Analysis Technique for Closed Queueing
Networks, IEEE Transactions on Computers, 57(6):780-794, June 2008.

[Function File][Xl, Xu, Ql, Qu] = qnclosedgb (N, D, Z)
Compute Geometric Bounds (GB) for single-class, closed Queueing Networks.

INPUTS

N number of requests in the system (scalar, N > 0).

D D(k) is the service demand of service center k (D(k) ≥ 0).

Z external delay (think time, scalar). If omitted, it is assumed to be zero.

OUTPUTS

Xl
Xu Lower and upper bound on the system throughput. If Z>0, these bounds

are computed using Geometric Square-root Bounds (GSB). If Z==0, these
bounds are computed using Geometric Bounds (GB)

Ql
Qu Ql(i) and Qu(i) are the lower and upper bounds respectively of the

queue length for service center i.

See also: qnclosedab.

50 queueing

REFERENCES

G. Casale, R. R. Muntz, G. Serazzi, Geometric Bounds: a Non-Iterative Analysis Tech-
nique for Closed Queueing Networks, IEEE Transactions on Computers, 57(6):780-794, June
2008. http://doi.ieeecomputersociety.org/10.1109/TC.2008.37

In this implementation we set X+ and X− as the upper and lower Asymptotic Bounds
as computed by the qnclosedab function, respectively.

6.6 Utility functions

6.6.1 Open or closed networks

[Function File][U, R, Q, X] = qnclosed (N, S, V, . . .)
This function computes steady-state performance measures of closed queueing net-
works using the Mean Value Analysis (MVA) algorithm. The qneneing network is
allowed to contain fixed-capacity centers, delay centers or general load-dependent
centers. Multiple request classes are supported.

This function dispatches the computation to one of qnclosedsinglemva,
qnclosedsinglemvald or qnclosedmultimva.

• If N is a scalar, the network is assumed to have a single class of requests; in
this case, the exact MVA algorithm is used to analyze the network. If S is a
vector, then S(k) is the average service time of center k, and this function calls
qnclosedsinglemva which supports load-independent service centers. If S is a
matrix, S(k,i) is the average service time at service center k when i ≥ 1 jobs
are present; in this case, the network is analyzed with the qnclosedsinglemvald
function.

• If N is a vector, the network is assumed to have multiple classes of requests,
and is analyzed using the exact multiclass MVA algorithm as implemented in the
qnclosedmultimva function.

See also: qnclosedsinglemva, qnclosedsinglemvald, qnclosedmultimva.

EXAMPLE

P = [0 0.3 0.7; 1 0 0; 1 0 0]; # Transition probability matrix

S = [1 0.6 0.2]; # Average service times

m = ones(1,3); # All centers are single-server

Z = 2; # External delay

N = 15; # Maximum population to consider

V = qnvisits(P); # Compute number of visits from P

D = V .* S; # Compute service demand from S and V

X_bsb_lower = X_bsb_upper = zeros(1,N);

X_ab_lower = X_ab_upper = zeros(1,N);

X_mva = zeros(1,N);

for n=1:N

[X_bsb_lower(n) X_bsb_upper(n)] = qnclosedbsb(n, D, Z);

[X_ab_lower(n) X_ab_upper(n)] = qnclosedab(n, D, Z);

http://doi.ieeecomputersociety.org/10.1109/TC.2008.37

Chapter 6: Queueing Networks 51

[U R Q X] = qnclosed(n, S, V, m, Z);

X_mva(n) = X(1)/V(1);

endfor

close all;

plot(1:N, X_ab_lower,"g;Asymptotic Bounds;", \

1:N, X_bsb_lower,"k;Balanced System Bounds;", \

1:N, X_mva,"b;MVA;", "linewidth", 2, \

1:N, X_bsb_upper,"k", \

1:N, X_ab_upper,"g");

axis([1,N,0,1]);

xlabel("Number of Requests n");

ylabel("System Throughput X(n)");

legend("location","southeast");

[Function File][U, R, Q, X] = qnopen (lambda, S, V, . . .)
Compute utilization, response time, average number of requests in the system, and
throughput for open queueing networks. If lambda is a scalar, the network is consid-
ered a single-class QN and is solved using qnopensingle. If lambda is a vector, the
network is considered as a multiclass QN and solved using qnopenmulti.

See also: qnopensingle, qnopenmulti.

6.6.2 Computation of the visit counts

For single-class networks the average number of visits satisfy the following equation:

Vj = P0j +
∑K
i=1 ViPij

where P0j is the probability that an external arrival goes to service center j. If λj is the
external arrival rate to service center j, and λ =

∑
j λj is the overall external arrival rate,

then P0j = λj/λ.

For closed networks, the visit ratios satisfy the following equation:

Vj =
∑K
i=1 ViPij, V1 = 1

The definitions above can be extended to multiple class networks as follows. We define
the visit ratios Vsj for class s customers at service center j as follows:

Vsj =
∑C
r=1

∑K
i=1 VriPrisj, Vs1 = 1

while for open networks:

Vsj = P0sj +
∑C
r=1

∑K
i=1 VriPrisj

where P0sj is the probability that an external arrival goes to service center j as a class-
s request. If λsj is the external arrival rate of class s requests to service center j, and
λ =

∑
s

∑
j λsj is the overall external arrival rate to the whole system, then P0sj = λsj/λ.

[Function File][V ch] = qnvisits (P)
[Function File]V = qnvisits (P, lambda)

Compute the average number of visits to the service centers of a single class, open or
closed Queueing Network with N service centers.

INPUTS

52 queueing

P Routing probability matrix. For single class networks, P(i,j) is the
probability that a request which completed service at center i is routed to
center j. For closed networks it must hold that sum(P,2)==1. The routing
graph myst be strongly connected, meaning that it must be possible to
eventually reach each node starting from each node. For multiple class
networks, P(r,i,s,j) is the probability that a class r request which
completed service at center i is routed to center j as a class s request.
Class switching is supported.

lambda (open networks only) vector of external arrivals. For single class networks,
lambda(i) is the external arrival rate to center i. For multiple class
networks, lambda(r,i) is the arrival rate of class r requests to center i.
If this parameter is omitted, the network is assumed to be closed.

OUTPUTS

V For single class networks, V(i) is the average number of visits to server
i. For multiple class networks, V(r,i) is the class r visit ratio at center
i.

ch (For closed networks only). ch(c,k) is the number of the chain that class
c at center k belongs to. The total number of chains is max(ch).

EXAMPLE

P = [0 0.4 0.6 0; \

0.2 0 0.2 0.6; \

0 0 0 1; \

0 0 0 0];

lambda = [0.1 0 0 0.3];

V = qnvisits(P,lambda);

S = [2 1 2 1.8];

m = [3 1 1 2];

[U R Q X] = qnopensingle(sum(lambda), S, V, m);

6.6.3 Other utility functions

[Function File]pop_mix = population_mix (k, N)
Return the set of valid population mixes with exactly k customers, for a closed multi-
class Queueing Network with population vector N. More specifically, given a multiclass
Queueing Network with C customer classes, such that there are N(i) requests of class
i, a k-mix mix is a C-dimensional vector with the following properties:

all(mix >= 0);

all(mix <= N);

sum(mix) == k;

This function enumerates all valid k-mixes, such that pop_mix(i) is a C dimensional
row vector representing a valid population mix, for all i.

INPUTS

k Total population size of the requested mix. k must be a nonnegative
integer

Chapter 6: Queueing Networks 53

N N(i) is the number of class i requests. The condition k ≤ sum(N) must
hold.

OUTPUTS

pop mix pop_mix(i,j) is the number of class j requests in the i-th population
mix. The number of population mixes is rows(pop_mix) .

Note that if you are interested in the number of k-mixes and you don’t care to
enumerate them, you can use the funcion qnmvapop.

See also: qnmvapop.

REFERENCES

Herb Schwetman, Implementing the Mean Value Algorithm for the Solu-
tion of Queueing Network Models, Technical Report CSD-TR-355, Depart-
ment of Computer Sciences, Purdue University, feb 15, 1982, available at
http://www.cs.purdue.edu/research/technical_reports/1980/TR 80-355.pdf

Note that the slightly different problem of generating all tuples k1, k2, . . . kN such that∑
i ki = k and ki are nonnegative integers, for some fixed integer k ≥ 0 has been described in

S. Santini, Computing the Indices for a Complex Summation, unpublished report, available
at http://arantxa.ii.uam.es/~ssantini/writing/notes/s668_summation.pdf

[Function File]H = qnmvapop (N)
Given a network with C customer classes, this function computes the number of valid
population mixes H(r,n) that can be constructed by the multiclass MVA algorithm
by allocating n customers to the first r classes.

INPUTS

N Population vector. N(c) is the number of class-c requests in the system.
The total number of requests in the network is sum(N).

OUTPUTS

H H(r,n) is the number of valid populations that can be constructed allo-
cating n customers to the first r classes.

See also: qnclosedmultimva,population mix.

REFERENCES

Zahorjan, J. and Wong, E. The solution of separable queueing network models using
mean value analysis. SIGMETRICS Perform. Eval. Rev. 10, 3 (Sep. 1981), 80-85. DOI
http://doi.acm.org/10.1145/1010629.805477

http://www.cs.purdue.edu/research/technical_reports/1980/TR 80-355.pdf
http://arantxa.ii.uam.es/~ssantini/writing/notes/s668_summation.pdf
http://doi.acm.org/10.1145/1010629.805477

Appendix A: Contributing Guidelines 55

Appendix A Contributing Guidelines

Contributions and bug reports are always welcome. If you want to contribute to the
queueing package, here are some guidelines:

• If you are contributing a new function, please embed proper documentation within
the function itself. The documentation must be in texinfo format, so that it will be
extracted and formatted into the printable manual. See the existing functions of the
queueing package for the documentation style.

• The documentation should be as precise as possible. In particular, always state what
the valid ranges of the parameters are.

• If you are contributing a new function, ensure that the function properly checks the
validity of its input parameters. For example, each function accepting vectors should
check whether the dimensions match.

• Always provide bibliographic references for each algorithm you contribute. If your
implementation differs in some way from the reference you give, please describe how
and why your implementation differs.

• Include Octave test and demo blocks with your code. Test blocks are particularly im-
portant, because Queueing Network algorithms tend to be quite complex to implement
correctly, and we must ensure that the implementations provided with the queueing

package are (mostly) correct.

Send your contribution to Moreno Marzolla (marzolla@cs.unibo.it). Even if you are
just a user of queueing, and find this package useful, let me know by dropping me a line.
Thanks.

mailto:marzolla@cs.unibo.it

Appendix B: Acknowledgements 57

Appendix B Acknowledgements

The following people (listed in alphabetical order) contributed to the queueing package,
either by providing feedback, reporting bugs or contributing code: Philip Carinhas, Phil
Colbourn, Yves Durand, Marco Guazzone, Dmitry Kolesnikov.

Appendix C: GNU GENERAL PUBLIC LICENSE 59

Appendix C GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

http://fsf.org/

60 queueing

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

Appendix C: GNU GENERAL PUBLIC LICENSE 61

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

62 queueing

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

Appendix C: GNU GENERAL PUBLIC LICENSE 63

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.

64 queueing

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

Appendix C: GNU GENERAL PUBLIC LICENSE 65

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.

66 queueing

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so

Appendix C: GNU GENERAL PUBLIC LICENSE 67

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

68 queueing

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

Appendix C: GNU GENERAL PUBLIC LICENSE 69

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a
GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it more
useful to permit linking proprietary applications with the library. If this is what you want
to do, use the GNU Lesser General Public License instead of this License. But first, please
read http://www.gnu.org/philosophy/why-not-lgpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html

Concept Index 71

Concept Index

A
Approximate MVA . 39, 42
Asymmetric M/M/m system 22

B
BCMP network . 34
Birth-death process . 13
blocking queueing network 45, 46
bounds, asymptotic . 47
bounds, balanced system . 48
bounds, geometric . 49

C
closed network 32, 33, 47, 48, 49, 50
Closed network, approximate analysis 39, 42
closed network, finite capacity 45, 46
closed network, multiple classes 40, 46, 52, 53
Closed network, multiple classes 42
closed network, single class 36, 38
Closed network, single class . 39
CMVA . 39
Continuous time Markov chain 12
convolution algorithm . 32, 33
copyright . 59

D
Discrete time Markov chain . 11

E
Expected sojourn time . 13

F
First passage times . 11, 16

J
Jackson network . 31

L
load-dependent service center 33, 38

M
M/G/1 system . 22

M/Hm/1 system . 23
M/M/1 system . 17
M/M/1/K system . 20
M/M/inf system . 19
M/M/m system . 18
M/M/m/K system . 21
Markov chain, continuous time . . 12, 13, 14, 15, 16
Markov chain, discrete time . 11
Markov chain, state occupancy probabilities 12
Markov chain, stationary probabilities 11
Mean time to absorption . 15
Mean Value Analysys (MVA) 36, 38, 39, 40, 44
Mean Value Analysys (MVA), approximate 39,

42
mixed network . 44

N
normalization constant 32, 33, 36

O
open network . 47, 48, 51
open network, multiple classes 35
open network, single class 31, 34

P
population mix . 52, 53

Q
queueing network with blocking 45
queueing networks . 25

R
RS blocking . 46

S
Stationary probabilities . 11, 12

T
Time-alveraged sojourn time 14
traffic intensity . 19

W
warranty . 59

Function Index 73

Function Index

C
ctmc . 12
ctmc_bd . 13
ctmc_exps . 13
ctmc_fpt . 16
ctmc_mtta . 15
ctmc_taexps . 14

D
dtmc . 11
dtmc_fpt . 11

P
population_mix . 52

Q
qnammm . 22
qnclosed . 50
qnclosedab . 47
qnclosedbsb . 48
qnclosedgb . 49
qnclosedmultimva . 40
qnclosedmultimvaapprox . 42

qnclosedpb . 49
qnclosedsinglemva . 36
qnclosedsinglemvaapprox . 39
qnclosedsinglemvald . 38
qncmva . 39
qnconvolution . 32
qnconvolutionld . 33
qnjackson . 31
qnmarkov . 45
qnmg1 . 22
qnmh1 . 23
qnmix . 44
qnmknode . 28
qnmm1 . 17
qnmm1k . 20
qnmminf . 19
qnmmm . 18
qnmmmk . 21
qnmvablo . 45
qnmvapop . 53
qnopen . 51
qnopenab . 47
qnopenbsb . 48
qnopenmulti . 35
qnopensingle . 34
qnsolve . 28
qnvisits . 51

Author Index 75

Author Index

A
Akyildiz, I. F. 45

B
Bard, Y. 43
Bolch, G. . . 16, 18, 19, 20, 22, 31, 33, 34, 35, 38, 42
Buzen, J. P. 33

C
Casale, G. 39, 49, 50

D
de Meer, H. . . 16, 18, 19, 20, 22, 31, 33, 34, 35, 38,

42

G
Graham, G. S. 36, 40, 42, 43, 45, 47, 48
Greiner, S. . . . 16, 18, 19, 20, 22, 31, 33, 34, 35, 38,

42

H
Hsieh, C. H . 49

J
Jain, R. 38

K
Kobayashi, H. 34

L
Lam, S. 49
Lavenberg, S. S. 38, 42
Lazowska, E. D. 36, 40, 42, 43, 45, 47, 48

M
Muntz, R. R. 49, 50

R
Reiser, M. 34, 38, 42

S
Santini, S. 53
Schweitzer, P. 43
Schwetman, H. 34, 45, 53
Serazzi, G. 49, 50
Sevcik, K. C. 36, 40, 42, 43, 45, 47, 48

T
Trivedi, K. . . . 16, 18, 19, 20, 22, 31, 33, 34, 35, 38,

42

W
Wong, E. 53

Z
Zahorjan, J. 36, 40, 42, 43, 45, 47, 48, 53

	Summary
	Installing the queueing toolbox
	Installation through Octave package management system
	Manual installation
	Content of the source distribution
	Using the queueing toolbox

	Introduction and Getting Started
	Analysis of Closed Networks
	Analysis of Open Networks

	Markov Chains
	Discrete-Time Markov Chains
	Stationary Probability
	First Passage Times

	Continuous-Time Markov Chains
	Stationary Probability
	Birth-Death process
	Expected Sojourn Time
	Time-Averaged Expected Sojourn Time
	Expected Time to Absorption
	First Passage Times

	Single Station Queueing Systems
	The M/M/1 System
	The M/M/m System
	The M/M/inf System
	The M/M/1/K System
	The M/M/m/K System
	The Asymmetric M/M/m System
	The M/G/1 System
	The M/H_m/1 System

	Queueing Networks
	Introduction to QNs
	Single class models
	Multiple class models

	Generic Algorithms
	Algorithms for Product-Form QNs
	Jackson Networks
	The Convolution Algorithm
	Open networks
	Closed Networks
	Mixed Networks

	Algorithms for non Product-Form QNs
	Bounds on performance
	Utility functions
	Open or closed networks
	Computation of the visit counts
	Other utility functions

	Contributing Guidelines
	Acknowledgements
	GNU GENERAL PUBLIC LICENSE
	Concept Index
	Function Index
	Author Index

