view lib/trunc.c @ 37246:5cfb3a67238d

regex: avoid glibc deadlock during configure glibc has a known bug where certain corruptions of the heap can cause malloc to default to printing a debug message that includes a backtrace, but the act of getting the backtrace uses dlopen which in turn calls into malloc, causing a recursive lock ending in deadlock. Thus, when configure is probing for a known glibc heap corruption bug, the overall configure would hang. The solution suggested by glibc developers is to force malloc to quit printing debug messages, which avoids recursive malloc. * m4/regex.m4 (gl_REGEX): Avoid recursive malloc deadlock when glibc bug 15078 in turn triggers bug 16159. Reported by Michal Privoznik. Signed-off-by: Eric Blake <eblake@redhat.com>
author Eric Blake <eblake@redhat.com>
date Tue, 03 Dec 2013 10:34:13 -0700
parents c741bc27922a
children 344018b6e5d7
line wrap: on
line source

/* Round towards zero.
   Copyright (C) 2007, 2010-2013 Free Software Foundation, Inc.

   This program is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

/* Written by Bruno Haible <bruno@clisp.org>, 2007.  */

#if ! defined USE_LONG_DOUBLE
# include <config.h>
#endif

/* Specification.  */
#include <math.h>

#include <float.h>

#undef MIN

#ifdef USE_LONG_DOUBLE
# define FUNC truncl
# define DOUBLE long double
# define MANT_DIG LDBL_MANT_DIG
# define MIN LDBL_MIN
# define L_(literal) literal##L
#elif ! defined USE_FLOAT
# define FUNC trunc
# define DOUBLE double
# define MANT_DIG DBL_MANT_DIG
# define MIN DBL_MIN
# define L_(literal) literal
#else /* defined USE_FLOAT */
# define FUNC truncf
# define DOUBLE float
# define MANT_DIG FLT_MANT_DIG
# define MIN FLT_MIN
# define L_(literal) literal##f
#endif

/* -0.0.  See minus-zero.h.  */
#if defined __hpux || defined __sgi || defined __ICC
# define MINUS_ZERO (-MIN * MIN)
#else
# define MINUS_ZERO L_(-0.0)
#endif

/* MSVC with option -fp:strict refuses to compile constant initializers that
   contain floating-point operations.  Pacify this compiler.  */
#ifdef _MSC_VER
# pragma fenv_access (off)
#endif

/* 2^(MANT_DIG-1).  */
static const DOUBLE TWO_MANT_DIG =
  /* Assume MANT_DIG <= 5 * 31.
     Use the identity
       n = floor(n/5) + floor((n+1)/5) + ... + floor((n+4)/5).  */
  (DOUBLE) (1U << ((MANT_DIG - 1) / 5))
  * (DOUBLE) (1U << ((MANT_DIG - 1 + 1) / 5))
  * (DOUBLE) (1U << ((MANT_DIG - 1 + 2) / 5))
  * (DOUBLE) (1U << ((MANT_DIG - 1 + 3) / 5))
  * (DOUBLE) (1U << ((MANT_DIG - 1 + 4) / 5));

DOUBLE
FUNC (DOUBLE x)
{
  /* The use of 'volatile' guarantees that excess precision bits are dropped
     at each addition step and before the following comparison at the caller's
     site.  It is necessary on x86 systems where double-floats are not IEEE
     compliant by default, to avoid that the results become platform and compiler
     option dependent.  'volatile' is a portable alternative to gcc's
     -ffloat-store option.  */
  volatile DOUBLE y = x;
  volatile DOUBLE z = y;

  if (z > L_(0.0))
    {
      /* For 0 < x < 1, return +0.0 even if the current rounding mode is
         FE_DOWNWARD.  */
      if (z < L_(1.0))
        z = L_(0.0);
      /* Avoid rounding errors for values near 2^k, where k >= MANT_DIG-1.  */
      else if (z < TWO_MANT_DIG)
        {
          /* Round to the next integer (nearest or up or down, doesn't matter).  */
          z += TWO_MANT_DIG;
          z -= TWO_MANT_DIG;
          /* Enforce rounding down.  */
          if (z > y)
            z -= L_(1.0);
        }
    }
  else if (z < L_(0.0))
    {
      /* For -1 < x < 0, return -0.0 regardless of the current rounding
         mode.  */
      if (z > L_(-1.0))
        z = MINUS_ZERO;
      /* Avoid rounding errors for values near -2^k, where k >= MANT_DIG-1.  */
      else if (z > - TWO_MANT_DIG)
        {
          /* Round to the next integer (nearest or up or down, doesn't matter).  */
          z -= TWO_MANT_DIG;
          z += TWO_MANT_DIG;
          /* Enforce rounding up.  */
          if (z < y)
            z += L_(1.0);
        }
    }
  return z;
}