view liboctave/operators/mx-op-defs.h @ 21244:1473547f50f5

include octave-config.h in public header files * mk-opts.pl, mkbuiltins, mk-ops.awk, sparse-mk-ops.awk: Emit "#include octave-config.h" statement for generated header files. * build-env.h, builtins.h, Cell.h, base-text-renderer.h, c-file-ptr-stream.h, cdisplay.h, comment-list.h, data.h, debug.h, defaults.in.h, defun-dld.h, defun-int.h, defun.h, dirfns.h, display.h, dynamic-ld.h, error.h, errwarn.h, event-queue.h, file-io.h, ft-text-renderer.h, gl-render.h, gl2ps-print.h, graphics.in.h, gripes.h, help.h, hook-fcn.h, input.h, jit-ir.h, jit-typeinfo.h, jit-util.h, load-path.h, load-save.h, ls-ascii-helper.h, ls-hdf5.h, ls-mat-ascii.h, ls-mat4.h, ls-mat5.h, ls-oct-binary.h, ls-oct-text.h, ls-utils.h, mex.h, mexproto.h, mxarray.in.h, oct-errno.h, oct-fstrm.h, oct-handle.h, oct-hdf5-types.h, oct-hdf5.h, oct-hist.h, oct-iostrm.h, oct-lvalue.h, oct-map.h, oct-obj.h, oct-opengl.h, oct-prcstrm.h, oct-procbuf.h, oct-stdstrm.h, oct-stream.h, oct-strstrm.h, oct.h, octave-default-image.h, octave-link.h, octave-preserve-stream-state.h, pager.h, pr-output.h, procstream.h, profiler.h, pt-jit.h, sighandlers.h, siglist.h, sparse-xdiv.h, sparse-xpow.h, symtab.h, sysdep.h, text-renderer.h, toplev.h, txt-eng.h, utils.h, variables.h, workspace-element.h, xdiv.h, xnorm.h, xpow.h, zfstream.h, oct-qhull.h, ov-base-diag.h, ov-base-int.h, ov-base-mat.h, ov-base-scalar.h, ov-base-sparse.h, ov-base.h, ov-bool-mat.h, ov-bool-sparse.h, ov-bool.h, ov-builtin.h, ov-cell.h, ov-ch-mat.h, ov-class.h, ov-classdef.h, ov-colon.h, ov-complex.h, ov-cs-list.h, ov-cx-diag.h, ov-cx-mat.h, ov-cx-sparse.h, ov-dld-fcn.h, ov-fcn-handle.h, ov-fcn-inline.h, ov-fcn.h, ov-float.h, ov-flt-complex.h, ov-flt-cx-diag.h, ov-flt-cx-mat.h, ov-flt-re-diag.h, ov-flt-re-mat.h, ov-int-traits.h, ov-int16.h, ov-int32.h, ov-int64.h, ov-int8.h, ov-intx.h, ov-java.h, ov-lazy-idx.h, ov-mex-fcn.h, ov-null-mat.h, ov-oncleanup.h, ov-perm.h, ov-range.h, ov-re-diag.h, ov-re-mat.h, ov-re-sparse.h, ov-scalar.h, ov-str-mat.h, ov-struct.h, ov-type-conv.h, ov-typeinfo.h, ov-uint16.h, ov-uint32.h, ov-uint64.h, ov-uint8.h, ov-usr-fcn.h, ov.h, ovl.h, octave.h, op-int.h, ops.h, options-usage.h, lex.h, parse.h, pt-all.h, pt-arg-list.h, pt-array-list.h, pt-assign.h, pt-binop.h, pt-bp.h, pt-cbinop.h, pt-cell.h, pt-check.h, pt-classdef.h, pt-cmd.h, pt-colon.h, pt-const.h, pt-decl.h, pt-eval.h, pt-except.h, pt-exp.h, pt-fcn-handle.h, pt-funcall.h, pt-id.h, pt-idx.h, pt-jump.h, pt-loop.h, pt-mat.h, pt-misc.h, pt-pr-code.h, pt-select.h, pt-stmt.h, pt-unop.h, pt-walk.h, pt.h, token.h, version.in.h, Array-util.h, Array.h, CColVector.h, CDiagMatrix.h, CMatrix.h, CNDArray.h, CRowVector.h, CSparse.h, DiagArray2.h, MArray.h, MDiagArray2.h, MSparse.h, Matrix.h, MatrixType.h, PermMatrix.h, Range.h, Sparse.h, boolMatrix.h, boolNDArray.h, boolSparse.h, chMatrix.h, chNDArray.h, dColVector.h, dDiagMatrix.h, dMatrix.h, dNDArray.h, dRowVector.h, dSparse.h, dim-vector.h, fCColVector.h, fCDiagMatrix.h, fCMatrix.h, fCNDArray.h, fCRowVector.h, fColVector.h, fDiagMatrix.h, fMatrix.h, fNDArray.h, fRowVector.h, idx-vector.h, int16NDArray.h, int32NDArray.h, int64NDArray.h, int8NDArray.h, intNDArray.h, uint16NDArray.h, uint32NDArray.h, uint64NDArray.h, uint8NDArray.h, f77-fcn.h, lo-error.h, quit.h, CmplxAEPBAL.h, CmplxCHOL.h, CmplxGEPBAL.h, CmplxHESS.h, CmplxLU.h, CmplxQR.h, CmplxQRP.h, CmplxSCHUR.h, CmplxSVD.h, CollocWt.h, DAE.h, DAEFunc.h, DAERT.h, DAERTFunc.h, DASPK.h, DASRT.h, DASSL.h, DET.h, EIG.h, LSODE.h, ODE.h, ODEFunc.h, ODES.h, ODESFunc.h, Quad.h, base-aepbal.h, base-dae.h, base-de.h, base-lu.h, base-min.h, base-qr.h, bsxfun-decl.h, bsxfun.h, dbleAEPBAL.h, dbleCHOL.h, dbleGEPBAL.h, dbleHESS.h, dbleLU.h, dbleQR.h, dbleQRP.h, dbleSCHUR.h, dbleSVD.h, eigs-base.h, fCmplxAEPBAL.h, fCmplxCHOL.h, fCmplxGEPBAL.h, fCmplxHESS.h, fCmplxLU.h, fCmplxQR.h, fCmplxQRP.h, fCmplxSCHUR.h, fCmplxSVD.h, fEIG.h, floatAEPBAL.h, floatCHOL.h, floatGEPBAL.h, floatHESS.h, floatLU.h, floatQR.h, floatQRP.h, floatSCHUR.h, floatSVD.h, lo-mappers.h, lo-specfun.h, oct-convn.h, oct-fftw.h, oct-norm.h, oct-rand.h, oct-spparms.h, randgamma.h, randmtzig.h, randpoisson.h, sparse-chol.h, sparse-dmsolve.h, sparse-lu.h, sparse-qr.h, Sparse-diag-op-defs.h, Sparse-op-decls.h, Sparse-op-defs.h, Sparse-perm-op-defs.h, mx-base.h, mx-defs.h, mx-ext.h, mx-op-decl.h, mx-op-defs.h, dir-ops.h, file-ops.h, file-stat.h, lo-sysdep.h, mach-info.h, oct-env.h, oct-group.h, oct-openmp.h, oct-passwd.h, oct-syscalls.h, oct-time.h, oct-uname.h, pathlen.h, sysdir.h, syswait.h, action-container.h, base-list.h, byte-swap.h, caseless-str.h, cmd-edit.h, cmd-hist.h, data-conv.h, functor.h, glob-match.h, lo-array-errwarn.h, lo-array-gripes.h, lo-cutils.h, lo-ieee.h, lo-macros.h, lo-math.h, lo-regexp.h, lo-traits.h, lo-utils.h, oct-alloc.h, oct-base64.h, oct-binmap.h, oct-cmplx.h, oct-glob.h, oct-inttypes.h, oct-locbuf.h, oct-mutex.h, oct-refcount.h, oct-rl-edit.h, oct-rl-hist.h, oct-shlib.h, oct-sort.h, oct-sparse.h, pathsearch.h, singleton-cleanup.h, sparse-sort.h, sparse-util.h, statdefs.h, str-vec.h, sun-utils.h, unwind-prot.h, url-transfer.h: Include octave-config.h.
author John W. Eaton <jwe@octave.org>
date Wed, 10 Feb 2016 14:25:53 -0500
parents 228b65504557
children 2aef506f3fec
line wrap: on
line source

/*

Copyright (C) 1996-2015 John W. Eaton
Copyright (C) 2008-2009 Jaroslav Hajek
Copyright (C) 2009-2010 VZLU Prague, a.s.

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if ! defined (octave_mx_op_defs_h)
#define octave_mx_op_defs_h 1

#include "octave-config.h"

#include "lo-array-errwarn.h"
#include "mx-op-decl.h"
#include "mx-inlines.cc"

#define SNANCHK(s) \
  if (xisnan (s)) \
    err_nan_to_logical_conversion ()

#define MNANCHK(m, MT) \
  if (do_mx_check (m, mx_inline_any_nan<MT>)) \
    err_nan_to_logical_conversion ()

// vector by scalar operations.

#define VS_BIN_OP(R, F, OP, V, S) \
  R \
  F (const V& v, const S& s) \
  { \
    return do_ms_binary_op<R::element_type, V::element_type, S> (v, s, OP); \
  }

#define VS_BIN_OPS(R, V, S) \
  VS_BIN_OP (R, operator +, mx_inline_add, V, S) \
  VS_BIN_OP (R, operator -, mx_inline_sub, V, S) \
  VS_BIN_OP (R, operator *, mx_inline_mul, V, S) \
  VS_BIN_OP (R, operator /, mx_inline_div, V, S)

// scalar by vector by operations.

#define SV_BIN_OP(R, F, OP, S, V) \
  R \
  F (const S& s, const V& v) \
  { \
    return do_sm_binary_op<R::element_type, S, V::element_type> (s, v, OP); \
  }

#define SV_BIN_OPS(R, S, V) \
  SV_BIN_OP (R, operator +, mx_inline_add, S, V) \
  SV_BIN_OP (R, operator -, mx_inline_sub, S, V) \
  SV_BIN_OP (R, operator *, mx_inline_mul, S, V) \
  SV_BIN_OP (R, operator /, mx_inline_div, S, V)

// vector by vector operations.

#define VV_BIN_OP(R, F, OP, V1, V2) \
  R \
  F (const V1& v1, const V2& v2) \
  { \
    return do_mm_binary_op<R::element_type, V1::element_type, V2::element_type> (v1, v2, OP, OP, OP, #F); \
  }

#define VV_BIN_OPS(R, V1, V2) \
  VV_BIN_OP (R, operator +, mx_inline_add, V1, V2) \
  VV_BIN_OP (R, operator -, mx_inline_sub, V1, V2) \
  VV_BIN_OP (R, product,    mx_inline_mul, V1, V2) \
  VV_BIN_OP (R, quotient,   mx_inline_div, V1, V2)

// matrix by scalar operations.

#define MS_BIN_OP(R, OP, M, S, F) \
  R \
  OP (const M& m, const S& s) \
  { \
    return do_ms_binary_op<R::element_type, M::element_type, S> (m, s, F); \
  }

#define MS_BIN_OPS(R, M, S) \
  MS_BIN_OP (R, operator +, M, S, mx_inline_add) \
  MS_BIN_OP (R, operator -, M, S, mx_inline_sub) \
  MS_BIN_OP (R, operator *, M, S, mx_inline_mul) \
  MS_BIN_OP (R, operator /, M, S, mx_inline_div)

#define MS_CMP_OP(F, OP, M, S) \
  boolMatrix \
  F (const M& m, const S& s) \
  { \
    return do_ms_binary_op<bool, M::element_type, S> (m, s, OP); \
  }

#define MS_CMP_OPS(M, S) \
  MS_CMP_OP (mx_el_lt, mx_inline_lt, M, S) \
  MS_CMP_OP (mx_el_le, mx_inline_le, M, S) \
  MS_CMP_OP (mx_el_ge, mx_inline_ge, M, S) \
  MS_CMP_OP (mx_el_gt, mx_inline_gt, M, S) \
  MS_CMP_OP (mx_el_eq, mx_inline_eq, M, S) \
  MS_CMP_OP (mx_el_ne, mx_inline_ne, M, S)

#define MS_BOOL_OP(F, OP, M, S) \
  boolMatrix \
  F (const M& m, const S& s) \
  { \
    MNANCHK (m, M::element_type); \
    SNANCHK (s); \
    return do_ms_binary_op<bool, M::element_type, S> (m, s, OP); \
  }

#define MS_BOOL_OPS(M, S) \
  MS_BOOL_OP (mx_el_and, mx_inline_and, M, S) \
  MS_BOOL_OP (mx_el_or,  mx_inline_or,  M, S)

// scalar by matrix operations.

#define SM_BIN_OP(R, OP, S, M, F) \
  R \
  OP (const S& s, const M& m) \
  { \
    return do_sm_binary_op<R::element_type, S, M::element_type> (s, m, F); \
  }

#define SM_BIN_OPS(R, S, M) \
  SM_BIN_OP (R, operator +, S, M, mx_inline_add) \
  SM_BIN_OP (R, operator -, S, M, mx_inline_sub) \
  SM_BIN_OP (R, operator *, S, M, mx_inline_mul) \
  SM_BIN_OP (R, operator /, S, M, mx_inline_div)

#define SM_CMP_OP(F, OP, S, M) \
  boolMatrix \
  F (const S& s, const M& m) \
  { \
    return do_sm_binary_op<bool, S, M::element_type> (s, m, OP); \
  }

#define SM_CMP_OPS(S, M) \
  SM_CMP_OP (mx_el_lt, mx_inline_lt, S, M) \
  SM_CMP_OP (mx_el_le, mx_inline_le, S, M) \
  SM_CMP_OP (mx_el_ge, mx_inline_ge, S, M) \
  SM_CMP_OP (mx_el_gt, mx_inline_gt, S, M) \
  SM_CMP_OP (mx_el_eq, mx_inline_eq, S, M) \
  SM_CMP_OP (mx_el_ne, mx_inline_ne, S, M)

#define SM_BOOL_OP(F, OP, S, M) \
  boolMatrix \
  F (const S& s, const M& m) \
  { \
    SNANCHK (s); \
    MNANCHK (m, M::element_type); \
    return do_sm_binary_op<bool, S, M::element_type> (s, m, OP); \
  }

#define SM_BOOL_OPS(S, M) \
  SM_BOOL_OP (mx_el_and, mx_inline_and, S, M) \
  SM_BOOL_OP (mx_el_or,  mx_inline_or,  S, M)

// matrix by matrix operations.

#define MM_BIN_OP(R, OP, M1, M2, F) \
  R \
  OP (const M1& m1, const M2& m2) \
  { \
    return do_mm_binary_op<R::element_type, M1::element_type, M2::element_type> (m1, m2, F, F, F, #OP); \
  }

#define MM_BIN_OPS(R, M1, M2) \
  MM_BIN_OP (R, operator +, M1, M2, mx_inline_add) \
  MM_BIN_OP (R, operator -, M1, M2, mx_inline_sub) \
  MM_BIN_OP (R, product,    M1, M2, mx_inline_mul) \
  MM_BIN_OP (R, quotient,   M1, M2, mx_inline_div)

#define MM_CMP_OP(F, OP, M1, M2) \
  boolMatrix \
  F (const M1& m1, const M2& m2) \
  { \
    return do_mm_binary_op<bool, M1::element_type, M2::element_type> (m1, m2, OP, OP, OP, #F); \
  }

#define MM_CMP_OPS(M1, M2) \
  MM_CMP_OP (mx_el_lt, mx_inline_lt, M1, M2) \
  MM_CMP_OP (mx_el_le, mx_inline_le, M1, M2) \
  MM_CMP_OP (mx_el_ge, mx_inline_ge, M1, M2) \
  MM_CMP_OP (mx_el_gt, mx_inline_gt, M1, M2) \
  MM_CMP_OP (mx_el_eq, mx_inline_eq, M1, M2) \
  MM_CMP_OP (mx_el_ne, mx_inline_ne, M1, M2)

#define MM_BOOL_OP(F, OP, M1, M2) \
  boolMatrix \
  F (const M1& m1, const M2& m2) \
  { \
    MNANCHK (m1, M1::element_type); \
    MNANCHK (m2, M2::element_type); \
    return do_mm_binary_op<bool, M1::element_type, M2::element_type> (m1, m2, OP, OP, OP, #F); \
  }

#define MM_BOOL_OPS(M1, M2) \
  MM_BOOL_OP (mx_el_and, mx_inline_and, M1, M2) \
  MM_BOOL_OP (mx_el_or,  mx_inline_or,  M1, M2)

// N-D matrix by scalar operations.

#define NDS_BIN_OP(R, OP, ND, S, F) \
  R \
  OP (const ND& m, const S& s) \
  { \
    return do_ms_binary_op<R::element_type, ND::element_type, S> (m, s, F); \
  }

#define NDS_BIN_OPS(R, ND, S) \
  NDS_BIN_OP (R, operator +, ND, S, mx_inline_add) \
  NDS_BIN_OP (R, operator -, ND, S, mx_inline_sub) \
  NDS_BIN_OP (R, operator *, ND, S, mx_inline_mul) \
  NDS_BIN_OP (R, operator /, ND, S, mx_inline_div)

#define NDS_CMP_OP(F, OP, ND, S) \
  boolNDArray \
  F (const ND& m, const S& s) \
  { \
    return do_ms_binary_op<bool, ND::element_type, S> (m, s, OP); \
  }

#define NDS_CMP_OPS(ND, S) \
  NDS_CMP_OP (mx_el_lt, mx_inline_lt, ND, S) \
  NDS_CMP_OP (mx_el_le, mx_inline_le, ND, S) \
  NDS_CMP_OP (mx_el_ge, mx_inline_ge, ND, S) \
  NDS_CMP_OP (mx_el_gt, mx_inline_gt, ND, S) \
  NDS_CMP_OP (mx_el_eq, mx_inline_eq, ND, S) \
  NDS_CMP_OP (mx_el_ne, mx_inline_ne, ND, S)

#define NDS_BOOL_OP(F, OP, ND, S) \
  boolNDArray \
  F (const ND& m, const S& s) \
  { \
    MNANCHK (m, ND::element_type); \
    SNANCHK (s); \
    return do_ms_binary_op<bool, ND::element_type, S> (m, s, OP); \
  }

#define NDS_BOOL_OPS(ND, S) \
  NDS_BOOL_OP (mx_el_and,     mx_inline_and,     ND, S) \
  NDS_BOOL_OP (mx_el_or,      mx_inline_or,      ND, S) \
  NDS_BOOL_OP (mx_el_not_and, mx_inline_not_and, ND, S) \
  NDS_BOOL_OP (mx_el_not_or,  mx_inline_not_or,  ND, S) \
  NDS_BOOL_OP (mx_el_and_not, mx_inline_and_not, ND, S) \
  NDS_BOOL_OP (mx_el_or_not,  mx_inline_or_not,  ND, S)

// scalar by N-D matrix operations.

#define SND_BIN_OP(R, OP, S, ND, F) \
  R \
  OP (const S& s, const ND& m) \
  { \
    return do_sm_binary_op<R::element_type, S, ND::element_type> (s, m, F); \
  }

#define SND_BIN_OPS(R, S, ND) \
  SND_BIN_OP (R, operator +, S, ND, mx_inline_add) \
  SND_BIN_OP (R, operator -, S, ND, mx_inline_sub) \
  SND_BIN_OP (R, operator *, S, ND, mx_inline_mul) \
  SND_BIN_OP (R, operator /, S, ND, mx_inline_div)

#define SND_CMP_OP(F, OP, S, ND) \
  boolNDArray \
  F (const S& s, const ND& m) \
  { \
    return do_sm_binary_op<bool, S, ND::element_type> (s, m, OP); \
  }

#define SND_CMP_OPS(S, ND) \
  SND_CMP_OP (mx_el_lt, mx_inline_lt, S, ND) \
  SND_CMP_OP (mx_el_le, mx_inline_le, S, ND) \
  SND_CMP_OP (mx_el_ge, mx_inline_ge, S, ND) \
  SND_CMP_OP (mx_el_gt, mx_inline_gt, S, ND) \
  SND_CMP_OP (mx_el_eq, mx_inline_eq, S, ND) \
  SND_CMP_OP (mx_el_ne, mx_inline_ne, S, ND)

#define SND_BOOL_OP(F, OP, S, ND) \
  boolNDArray \
  F (const S& s, const ND& m) \
  { \
    SNANCHK (s); \
    MNANCHK (m, ND::element_type); \
    return do_sm_binary_op<bool, S, ND::element_type> (s, m, OP); \
  }

#define SND_BOOL_OPS(S, ND) \
  SND_BOOL_OP (mx_el_and,     mx_inline_and,     S, ND) \
  SND_BOOL_OP (mx_el_or,      mx_inline_or,      S, ND) \
  SND_BOOL_OP (mx_el_not_and, mx_inline_not_and, S, ND) \
  SND_BOOL_OP (mx_el_not_or,  mx_inline_not_or,  S, ND) \
  SND_BOOL_OP (mx_el_and_not, mx_inline_and_not, S, ND) \
  SND_BOOL_OP (mx_el_or_not,  mx_inline_or_not,  S, ND)

// N-D matrix by N-D matrix operations.

#define NDND_BIN_OP(R, OP, ND1, ND2, F) \
  R \
  OP (const ND1& m1, const ND2& m2) \
  { \
    return do_mm_binary_op<R::element_type, ND1::element_type, ND2::element_type> (m1, m2, F, F, F, #OP); \
  }

#define NDND_BIN_OPS(R, ND1, ND2) \
  NDND_BIN_OP (R, operator +, ND1, ND2, mx_inline_add) \
  NDND_BIN_OP (R, operator -, ND1, ND2, mx_inline_sub) \
  NDND_BIN_OP (R, product,    ND1, ND2, mx_inline_mul) \
  NDND_BIN_OP (R, quotient,   ND1, ND2, mx_inline_div)

#define NDND_CMP_OP(F, OP, ND1, ND2) \
  boolNDArray \
  F (const ND1& m1, const ND2& m2) \
  { \
    return do_mm_binary_op<bool, ND1::element_type, ND2::element_type> (m1, m2, OP, OP, OP, #F); \
  }

#define NDND_CMP_OPS(ND1, ND2) \
  NDND_CMP_OP (mx_el_lt, mx_inline_lt, ND1, ND2) \
  NDND_CMP_OP (mx_el_le, mx_inline_le, ND1, ND2) \
  NDND_CMP_OP (mx_el_ge, mx_inline_ge, ND1, ND2) \
  NDND_CMP_OP (mx_el_gt, mx_inline_gt, ND1, ND2) \
  NDND_CMP_OP (mx_el_eq, mx_inline_eq, ND1, ND2) \
  NDND_CMP_OP (mx_el_ne, mx_inline_ne, ND1, ND2)

#define NDND_BOOL_OP(F, OP, ND1, ND2) \
  boolNDArray \
  F (const ND1& m1, const ND2& m2) \
  { \
    MNANCHK (m1, ND1::element_type); \
    MNANCHK (m2, ND2::element_type); \
    return do_mm_binary_op<bool, ND1::element_type, ND2::element_type> (m1, m2, OP, OP, OP, #F); \
  }

#define NDND_BOOL_OPS(ND1, ND2) \
  NDND_BOOL_OP (mx_el_and,     mx_inline_and,     ND1, ND2) \
  NDND_BOOL_OP (mx_el_or,      mx_inline_or,      ND1, ND2) \
  NDND_BOOL_OP (mx_el_not_and, mx_inline_not_and, ND1, ND2) \
  NDND_BOOL_OP (mx_el_not_or,  mx_inline_not_or,  ND1, ND2) \
  NDND_BOOL_OP (mx_el_and_not, mx_inline_and_not, ND1, ND2) \
  NDND_BOOL_OP (mx_el_or_not,  mx_inline_or_not,  ND1, ND2)

// scalar by diagonal matrix operations.

#define SDM_BIN_OP(R, OP, S, DM) \
  R \
  operator OP (const S& s, const DM& dm) \
  { \
    R r (dm.rows (), dm.cols ()); \
 \
    for (octave_idx_type i = 0; i < dm.length (); i++) \
      r.dgxelem (i) = s OP dm.dgelem (i); \
 \
    return r; \
}

#define SDM_BIN_OPS(R, S, DM) \
  SDM_BIN_OP (R, *, S, DM)

// diagonal matrix by scalar operations.

#define DMS_BIN_OP(R, OP, DM, S) \
  R \
  operator OP (const DM& dm, const S& s) \
  { \
    R r (dm.rows (), dm.cols ()); \
 \
    for (octave_idx_type i = 0; i < dm.length (); i++) \
      r.dgxelem (i) = dm.dgelem (i) OP s; \
 \
    return r; \
  }

#define DMS_BIN_OPS(R, DM, S) \
  DMS_BIN_OP (R, *, DM, S) \
  DMS_BIN_OP (R, /, DM, S)

// matrix by diagonal matrix operations.

#define MDM_BIN_OP(R, OP, M, DM, OPEQ) \
R \
OP (const M& m, const DM& dm) \
{ \
  R r; \
 \
  octave_idx_type m_nr = m.rows (); \
  octave_idx_type m_nc = m.cols (); \
 \
  octave_idx_type dm_nr = dm.rows (); \
  octave_idx_type dm_nc = dm.cols (); \
 \
  if (m_nr != dm_nr || m_nc != dm_nc) \
    err_nonconformant (#OP, m_nr, m_nc, dm_nr, dm_nc); \
 \
  r.resize (m_nr, m_nc); \
 \
  if (m_nr > 0 && m_nc > 0) \
    { \
      r = R (m); \
 \
      octave_idx_type len = dm.length (); \
 \
      for (octave_idx_type i = 0; i < len; i++) \
        r.elem (i, i) OPEQ dm.elem (i, i); \
    } \
 \
  return r; \
}

#define MDM_MULTIPLY_OP(R, M, DM, R_ZERO) \
R \
operator * (const M& m, const DM& dm) \
{ \
  R r; \
 \
  octave_idx_type m_nr = m.rows (); \
  octave_idx_type m_nc = m.cols (); \
 \
  octave_idx_type dm_nr = dm.rows (); \
  octave_idx_type dm_nc = dm.cols (); \
 \
  if (m_nc != dm_nr) \
    err_nonconformant ("operator *", m_nr, m_nc, dm_nr, dm_nc); \
 \
  r = R (m_nr, dm_nc); \
  R::element_type *rd = r.fortran_vec (); \
  const M::element_type *md = m.data (); \
  const DM::element_type *dd = dm.data (); \
 \
  octave_idx_type len = dm.length (); \
  for (octave_idx_type i = 0; i < len; i++) \
    { \
      mx_inline_mul (m_nr, rd, md, dd[i]); \
      rd += m_nr; md += m_nr; \
    } \
  mx_inline_fill (m_nr * (dm_nc - len), rd, R_ZERO); \
 \
  return r; \
}

#define MDM_BIN_OPS(R, M, DM, R_ZERO) \
  MDM_BIN_OP (R, operator +, M, DM, +=) \
  MDM_BIN_OP (R, operator -, M, DM, -=) \
  MDM_MULTIPLY_OP (R, M, DM, R_ZERO)

// diagonal matrix by matrix operations.

#define DMM_BIN_OP(R, OP, DM, M, OPEQ, PREOP) \
R \
OP (const DM& dm, const M& m) \
{ \
  R r; \
 \
  octave_idx_type dm_nr = dm.rows (); \
  octave_idx_type dm_nc = dm.cols (); \
 \
  octave_idx_type m_nr = m.rows (); \
  octave_idx_type m_nc = m.cols (); \
 \
  if (dm_nr != m_nr || dm_nc != m_nc) \
    err_nonconformant (#OP, dm_nr, dm_nc, m_nr, m_nc); \
  else \
    { \
      if (m_nr > 0 && m_nc > 0) \
        { \
          r = R (PREOP m); \
 \
          octave_idx_type len = dm.length (); \
 \
          for (octave_idx_type i = 0; i < len; i++) \
            r.elem (i, i) OPEQ dm.elem (i, i); \
        } \
      else \
        r.resize (m_nr, m_nc); \
    } \
 \
  return r; \
}

#define DMM_MULTIPLY_OP(R, DM, M, R_ZERO) \
R \
operator * (const DM& dm, const M& m) \
{ \
  R r; \
 \
  octave_idx_type dm_nr = dm.rows (); \
  octave_idx_type dm_nc = dm.cols (); \
 \
  octave_idx_type m_nr = m.rows (); \
  octave_idx_type m_nc = m.cols (); \
 \
  if (dm_nc != m_nr) \
    err_nonconformant ("operator *", dm_nr, dm_nc, m_nr, m_nc); \
 \
  r = R (dm_nr, m_nc); \
  R::element_type *rd = r.fortran_vec (); \
  const M::element_type *md = m.data (); \
  const DM::element_type *dd = dm.data (); \
 \
  octave_idx_type len = dm.length (); \
  for (octave_idx_type i = 0; i < m_nc; i++) \
    { \
      mx_inline_mul (len, rd, md, dd); \
      rd += len; md += m_nr; \
      mx_inline_fill (dm_nr - len, rd, R_ZERO); \
      rd += dm_nr - len; \
    } \
 \
  return r; \
}

#define DMM_BIN_OPS(R, DM, M, R_ZERO) \
  DMM_BIN_OP (R, operator +, DM, M, +=, ) \
  DMM_BIN_OP (R, operator -, DM, M, +=, -) \
  DMM_MULTIPLY_OP (R, DM, M, R_ZERO)

// diagonal matrix by diagonal matrix operations.

#define DMDM_BIN_OP(R, OP, DM1, DM2, F) \
  R \
  OP (const DM1& dm1, const DM2& dm2) \
  { \
    R r; \
 \
    octave_idx_type dm1_nr = dm1.rows (); \
    octave_idx_type dm1_nc = dm1.cols (); \
 \
    octave_idx_type dm2_nr = dm2.rows (); \
    octave_idx_type dm2_nc = dm2.cols (); \
 \
    if (dm1_nr != dm2_nr || dm1_nc != dm2_nc) \
      err_nonconformant (#OP, dm1_nr, dm1_nc, dm2_nr, dm2_nc); \
 \
    r.resize (dm1_nr, dm1_nc); \
 \
    if (dm1_nr > 0 && dm1_nc > 0) \
      F (dm1.length (), r.fortran_vec (), dm1.data (), dm2.data ()); \
 \
    return r; \
  }

#define DMDM_BIN_OPS(R, DM1, DM2) \
  DMDM_BIN_OP (R, operator +, DM1, DM2, mx_inline_add) \
  DMDM_BIN_OP (R, operator -, DM1, DM2, mx_inline_sub) \
  DMDM_BIN_OP (R, product,    DM1, DM2, mx_inline_mul)

// scalar by N-D array min/max ops

#define SND_MINMAX_FCN(FCN, OP, T, S) \
T \
FCN (S d, const T& m) \
{ \
  return do_sm_binary_op<T::element_type, S, T::element_type> (d, m, mx_inline_x##FCN); \
}

#define NDS_MINMAX_FCN(FCN, OP, T, S) \
T \
FCN (const T& m, S d) \
{ \
  return do_ms_binary_op<T::element_type, T::element_type, S> (m, d, mx_inline_x##FCN); \
}

#define NDND_MINMAX_FCN(FCN, OP, T, S) \
T \
FCN (const T& a, const T& b) \
{ \
  return do_mm_binary_op<T::element_type, T::element_type, T::element_type> (a, b, mx_inline_x##FCN, mx_inline_x##FCN, mx_inline_x##FCN, #FCN); \
}

#define MINMAX_FCNS(T, S) \
  SND_MINMAX_FCN (min, <, T, S) \
  NDS_MINMAX_FCN (min, <, T, S) \
  NDND_MINMAX_FCN (min, <, T, S) \
  SND_MINMAX_FCN (max, >, T, S) \
  NDS_MINMAX_FCN (max, >, T, S) \
  NDND_MINMAX_FCN (max, >, T, S)

// permutation matrix by matrix ops and vice versa

#define PMM_MULTIPLY_OP(PM, M) \
M operator * (const PM& p, const M& x) \
{ \
  octave_idx_type nr = x.rows (); \
  octave_idx_type nc = x.columns (); \
  M result; \
  if (p.columns () != nr) \
    err_nonconformant ("operator *", p.rows (), p.columns (), nr, nc); \
  else \
    { \
      result = M (nr, nc); \
      result.assign (p.col_perm_vec (), idx_vector::colon, x); \
    } \
  \
  return result; \
}

#define MPM_MULTIPLY_OP(M, PM) \
M operator * (const M& x, const PM& p) \
{ \
  octave_idx_type nr = x.rows (); \
  octave_idx_type nc = x.columns (); \
  M result; \
  if (p.rows () != nc) \
    err_nonconformant ("operator *", nr, nc, p.rows (), p.columns ()); \
  \
  result = x.index (idx_vector::colon, p.col_perm_vec ()); \
  \
  return result; \
}

#define PMM_BIN_OPS(R, PM, M) \
  PMM_MULTIPLY_OP(PM, M);

#define MPM_BIN_OPS(R, M, PM) \
  MPM_MULTIPLY_OP(M, PM);

#define NDND_MAPPER_BODY(R, NAME) \
  R retval (dims ()); \
  octave_idx_type n = numel (); \
  for (octave_idx_type i = 0; i < n; i++) \
    retval.xelem (i) = NAME (elem (i)); \
  return retval;

#endif