view scripts/linear-algebra/gls.m @ 31122:46e15523ca06

perms.m: Small cleanups for Octave coding conventions (bug #60364) * perms.m: Wrap long lines in documentation to < 80 characters. Change output in documentation example to match what Octave actually produces. Use true/false for boolean variable "unique_v" rather than 0/1. Cuddle parentheses when doing indexing and use a space when calling a function. Add FIXME notes requesting an explanation of the apparently complicated algorithm being used for permutations and unque permutations. Remove period at end of error() message text per Octave conventions. Change BIST input validation to more precisely check error() message.
author Rik <rik@octave.org>
date Tue, 05 Jul 2022 08:57:15 -0700
parents 796f54d4ddbf
children
line wrap: on
line source

########################################################################
##
## Copyright (C) 1996-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn {} {[@var{beta}, @var{v}, @var{r}] =} gls (@var{y}, @var{x}, @var{o})
## Generalized least squares (GLS) model.
##
## Perform a generalized least squares estimation for the multivariate model
## @tex
## $@var{y} = @var{x}\,@var{b} + @var{e}$
## @end tex
## @ifnottex
## @w{@math{@var{y} = @var{x}*@var{B} + @var{E}}}
## @end ifnottex
## where
## @tex
## $@var{y}$ is a $t \times p$ matrix, $@var{x}$ is a $t \times k$ matrix,
## $@var{b}$ is a $k \times p$ matrix and $@var{e}$ is a $t \times p$ matrix.
## @end tex
## @ifnottex
## @var{y} is a @math{t}-by-@math{p} matrix, @var{x} is a
## @math{t}-by-@math{k} matrix, @var{b} is a @math{k}-by-@math{p} matrix
## and @var{e} is a @math{t}-by-@math{p} matrix.
## @end ifnottex
##
## @noindent
## Each row of @var{y} is a @math{p}-variate observation in which each column
## represents a variable.  Likewise, the rows of @var{x} represent
## @math{k}-variate observations or possibly designed values.  Furthermore,
## the collection of observations @var{x} must be of adequate rank, @math{k},
## otherwise @var{b} cannot be uniquely estimated.
##
## The observation errors, @var{e}, are assumed to originate from an
## underlying @math{p}-variate distribution with zero mean but possibly
## heteroscedastic observations.  That is, in general,
## @tex
## $\bar{@var{e}} = 0$ and cov(vec(@var{e})) = $s^2@var{o}$
## @end tex
## @ifnottex
## @code{@math{mean (@var{e}) = 0}} and
## @code{@math{cov (vec (@var{e})) = (@math{s}^2)*@var{o}}}
## @end ifnottex
## in which @math{s} is a scalar and @var{o} is a
## @tex
## @math{t \, p \times t \, p}
## @end tex
## @ifnottex
## @math{t*p}-by-@math{t*p}
## @end ifnottex
## matrix.
##
## The return values @var{beta}, @var{v}, and @var{r} are
## defined as follows.
##
## @table @var
## @item beta
## The GLS estimator for matrix @var{b}.
##
## @item v
## The GLS estimator for scalar @math{s^2}.
##
## @item r
## The matrix of GLS residuals, @math{@var{r} = @var{y} - @var{x}*@var{beta}}.
## @end table
## @seealso{ols}
## @end deftypefn

function [beta, v, r] = gls (y, x, o)

  if (nargin != 3)
    print_usage ();
  endif

  if (! (isnumeric (x) && isnumeric (y) && isnumeric (o)))
    error ("gls: X, Y, and O must be numeric matrices or vectors");
  endif

  if (ndims (x) != 2 || ndims (y) != 2 || ndims (o) != 2)
    error ("gls: X, Y and O must be 2-D matrices or vectors");
  endif

  [rx, cx] = size (x);
  [ry, cy] = size (y);
  [ro, co] = size (o);
  if (rx != ry)
    error ("gls: number of rows of X and Y must be equal");
  endif
  if (! issquare (o) || ro != ry*cy)
    error ("gls: matrix O must be square matrix with rows = rows (Y) * cols (Y)");
  endif

  if (isinteger (x))
    x = double (x);
  endif
  if (isinteger (y))
    y = double (y);
  endif
  if (isinteger (o))
    o = double (o);
  endif

  ## Start of algorithm
  o ^= -1/2;
  z = kron (eye (cy), x);
  z = o * z;
  y1 = o * reshape (y, ry*cy, 1);
  u = z' * z;
  r = rank (u);

  if (r == cx*cy)
    b = inv (u) * z' * y1;
  else
    b = pinv (z) * y1;
  endif

  beta = reshape (b, cx, cy);

  if (isargout (2) || isargout (3))
    r = y - x * beta;
    if (isargout (2))
      v = (reshape (r, ry*cy, 1))' * (o^2) * reshape (r, ry*cy, 1) / (rx*cy - r);
    endif
  endif

endfunction


%!test
%! x = [1:5]';
%! y = 3*x + 2;
%! x = [x, ones(5,1)];
%! o = diag (ones (5,1));
%! assert (gls (y,x,o), [3; 2], 50*eps);

## Test input validation
%!error <Invalid call> gls ()
%!error <Invalid call> gls (1)
%!error <Invalid call> gls (1, 2)
%!error gls ([true, true], [1, 2], ones (2))
%!error gls ([1, 2], [true, true], ones (2))
%!error gls ([1, 2], [1, 2], true (2))
%!error gls (ones (2,2,2), ones (2,2), ones (4,4))
%!error gls (ones (2,2), ones (2,2,2), ones (4,4))
%!error gls (ones (2,2), ones (2,2), ones (4,4,4))
%!error gls (ones (1,2), ones (2,2), ones (2,2))
%!error gls (ones (2,2), ones (2,2), ones (2,2))