view scripts/linear-algebra/logm.m @ 31122:46e15523ca06

perms.m: Small cleanups for Octave coding conventions (bug #60364) * perms.m: Wrap long lines in documentation to < 80 characters. Change output in documentation example to match what Octave actually produces. Use true/false for boolean variable "unique_v" rather than 0/1. Cuddle parentheses when doing indexing and use a space when calling a function. Add FIXME notes requesting an explanation of the apparently complicated algorithm being used for permutations and unque permutations. Remove period at end of error() message text per Octave conventions. Change BIST input validation to more precisely check error() message.
author Rik <rik@octave.org>
date Tue, 05 Jul 2022 08:57:15 -0700
parents 796f54d4ddbf
children
line wrap: on
line source

########################################################################
##
## Copyright (C) 2008-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{s} =} logm (@var{A})
## @deftypefnx {} {@var{s} =} logm (@var{A}, @var{opt_iters})
## @deftypefnx {} {[@var{s}, @var{iters}] =} logm (@dots{})
## Compute the matrix logarithm of the square matrix @var{A}.
##
## The implementation utilizes a Pad@'e approximant and the identity
##
## @example
## logm (@var{A}) = 2^k * logm (@var{A}^(1 / 2^k))
## @end example
##
## The optional input @var{opt_iters} is the maximum number of square roots
## to compute and defaults to 100.
##
## The optional output @var{iters} is the number of square roots actually
## computed.
## @seealso{expm, sqrtm}
## @end deftypefn

## Reference: N. J. Higham, Functions of Matrices: Theory and Computation
##            (SIAM, 2008.)
##

## Author: N. J. Higham
## Author: Richard T. Guy <guyrt7@wfu.edu>

function [s, iters] = logm (A, opt_iters = 100)

  if (nargin == 0)
    print_usage ();
  endif

  if (! issquare (A))
    error ("logm: A must be a square matrix");
  endif

  if (isscalar (A))
    s = log (A);
    return;
  elseif (isdiag (A))
    s = diag (log (diag (A)));
    return;
  endif

  [u, s] = schur (A);

  if (isreal (A))
    [u, s] = rsf2csf (u, s);
  endif

  eigv = diag (s);
  n = rows (A);
  tol = n * eps (max (abs (eigv)));
  real_neg_eigv = (real (eigv) < -tol) & (imag (eigv) <= tol);
  if (any (real_neg_eigv))
    warning ("Octave:logm:non-principal",
             "logm: principal matrix logarithm is not defined for matrices with negative eigenvalues; computing non-principal logarithm");
  endif

  real_eig = ! any (real_neg_eigv);

  if (max (abs (triu (s,1))(:)) < tol)
    ## Will run for Hermitian matrices as Schur decomposition is diagonal.
    ## This way is faster and more accurate but only works on a diagonal matrix.
    logeigv = log (eigv);
    logeigv(isinf (logeigv)) = -log (realmax ());
    s = u * diag (logeigv) * u';
    iters = 0;
  else
    k = 0;
    ## Algorithm 11.9 in "Function of matrices", by N. Higham
    theta = [0, 0, 1.61e-2, 5.38e-2, 1.13e-1, 1.86e-1, 2.6429608311114350e-1];
    p = 0;
    m = 7;
    while (k < opt_iters)
      tau = norm (s - eye (n), 1);
      if (tau <= theta (7))
        p += 1;
        j(1) = find (tau <= theta, 1);
        j(2) = find (tau / 2 <= theta, 1);
        if (j(1) - j(2) <= 1 || p == 2)
          m = j(1);
          break;
        endif
      endif
      k += 1;
      s = sqrtm (s);
    endwhile

    if (k >= opt_iters)
      warning ("logm: maximum number of square roots exceeded; results may still be accurate");
    endif

    s -= eye (n);

    if (m > 1)
      s = logm_pade_pf (s, m);
    endif

    s = 2^k * u * s * u';

    if (nargout == 2)
      iters = k;
    endif
  endif
  ## Remove small complex values (O(eps)) which may have entered calculation
  if (real_eig && isreal (A))
    s = real (s);
  endif

endfunction

################## ANCILLARY FUNCTIONS ################################
######  Taken from the mfttoolbox (GPL 3) by D. Higham.
######  Reference:
######      D. Higham, Functions of Matrices: Theory and Computation
######      (SIAM, 2008.).
#######################################################################

##LOGM_PADE_PF   Evaluate Pade approximant to matrix log by partial fractions.
##   Y = LOGM_PADE_PF(A,M) evaluates the [M/M] Pade approximation to
##   LOG(EYE(SIZE(A))+A) using a partial fraction expansion.

function s = logm_pade_pf (A, m)

  [nodes, wts] = gauss_legendre (m);
  ## Convert from [-1,1] to [0,1].
  nodes = (nodes+1)/2;
  wts /= 2;

  n = length (A);
  s = zeros (n);
  for j = 1:m
    s += wts(j)*(A/(eye (n) + nodes(j)*A));
  endfor

endfunction

######################################################################
## GAUSS_LEGENDRE  Nodes and weights for Gauss-Legendre quadrature.
##   [X,W] = GAUSS_LEGENDRE(N) computes the nodes X and weights W
##   for N-point Gauss-Legendre quadrature.

## Reference:
## G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature
## rules, Math. Comp., 23(106):221-230, 1969.

function [x, w] = gauss_legendre (n)

  i = 1:n-1;
  v = i./sqrt ((2*i).^2-1);
  [V, D] = eig (diag (v, -1) + diag (v, 1));
  x = diag (D);
  w = 2*(V(1,:)'.^2);

endfunction


%!assert (norm (logm ([1 -1;0 1]) - [0 -1; 0 0]) < 1e-5)
%!test
%! warning ("off", "Octave:logm:non-principal", "local");
%! assert (norm (expm (logm ([-1 2 ; 4 -1])) - [-1 2 ; 4 -1]) < 1e-5);
%!assert (logm ([1 -1 -1;0 1 -1; 0 0 1]), [0 -1 -1.5; 0 0 -1; 0 0 0], 1e-5)
%!assert (logm (10), log (10))
%!assert (full (logm (eye (3))), logm (full (eye (3))))
%!assert (full (logm (10*eye (3))), logm (full (10*eye (3))), 8*eps)
%!assert (logm (expm ([0 1i; -1i 0])), [0 1i; -1i 0], 10 * eps)
%!test <*60738>
%! A = [0.2510, 1.2808, -1.2252; ...
%!      0.2015, 1.0766, 0.5630; ...
%!      -1.9769, -1.0922, -0.5831];
%! if (ismac ())
%!   ## The math libraries on macOS seem to require larger tolerances
%!   tol = 60*eps;
%! else
%!   tol = 40*eps;
%! endif
%! warning ("off", "Octave:logm:non-principal", "local");
%! assert (expm (logm (A)), A, tol);
%!assert (expm (logm (eye (3))), eye (3));
%!assert (expm (logm (zeros (3))), zeros (3));

## Test input validation
%!error <Invalid call> logm ()
%!error <logm: A must be a square matrix> logm ([1 0;0 1; 2 2])