view scripts/sparse/pcr.m @ 31122:46e15523ca06

perms.m: Small cleanups for Octave coding conventions (bug #60364) * perms.m: Wrap long lines in documentation to < 80 characters. Change output in documentation example to match what Octave actually produces. Use true/false for boolean variable "unique_v" rather than 0/1. Cuddle parentheses when doing indexing and use a space when calling a function. Add FIXME notes requesting an explanation of the apparently complicated algorithm being used for permutations and unque permutations. Remove period at end of error() message text per Octave conventions. Change BIST input validation to more precisely check error() message.
author Rik <rik@octave.org>
date Tue, 05 Jul 2022 08:57:15 -0700
parents 796f54d4ddbf
children
line wrap: on
line source

########################################################################
##
## Copyright (C) 2004-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{x} =} pcr (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{m}, @var{x0}, @dots{})
## @deftypefnx {} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}] =} pcr (@dots{})
##
## Solve the linear system of equations @code{@var{A} * @var{x} = @var{b}} by
## means of the Preconditioned Conjugate Residuals iterative method.
##
## The input arguments are
##
## @itemize
## @item
## @var{A} can be either a square (preferably sparse) matrix or a function
## handle, inline function or string containing the name of a function which
## computes @code{@var{A} * @var{x}}.  In principle @var{A} should be
## symmetric and non-singular; if @code{pcr} finds @var{A} to be numerically
## singular, you will get a warning message and the @var{flag} output
## parameter will be set.
##
## @item
## @var{b} is the right hand side vector.
##
## @item
## @var{tol} is the required relative tolerance for the residual error,
## @code{@var{b} - @var{A} * @var{x}}.  The iteration stops if
## @code{norm (@var{b} - @var{A} * @var{x}) <=
##       @var{tol} * norm (@var{b} - @var{A} * @var{x0})}.
## If @var{tol} is empty or is omitted, the function sets
## @code{@var{tol} = 1e-6} by default.
##
## @item
## @var{maxit} is the maximum allowable number of iterations; if @code{[]} is
## supplied for @var{maxit}, or @code{pcr} has less arguments, a default
## value equal to 20 is used.
##
## @item
## @var{m} is the (left) preconditioning matrix, so that the iteration is
## (theoretically) equivalent to solving by
## @code{pcr} @code{@var{P} * @var{x} = @var{m} \ @var{b}}, with
## @code{@var{P} = @var{m} \ @var{A}}.  Note that a proper choice of the
## preconditioner may dramatically improve the overall performance of the
## method.  Instead of matrix @var{m}, the user may pass a function which
## returns the results of applying the inverse of @var{m} to a vector
## (usually this is the preferred way of using the preconditioner).  If
## @code{[]} is supplied for @var{m}, or @var{m} is omitted, no
## preconditioning is applied.
##
## @item
## @var{x0} is the initial guess.  If @var{x0} is empty or omitted, the
## function sets @var{x0} to a zero vector by default.
## @end itemize
##
## The arguments which follow @var{x0} are treated as parameters, and passed
## in a proper way to any of the functions (@var{A} or @var{m}) which are
## passed to @code{pcr}.  See the examples below for further details.
##
## The output arguments are
##
## @itemize
## @item
## @var{x} is the computed approximation to the solution of
## @code{@var{A} * @var{x} = @var{b}}.
##
## @item
## @var{flag} reports on the convergence.  @code{@var{flag} = 0} means the
## solution converged and the tolerance criterion given by @var{tol} is
## satisfied.  @code{@var{flag} = 1} means that the @var{maxit} limit for the
## iteration count was reached.  @code{@var{flag} = 3} reports a @code{pcr}
## breakdown, see [1] for details.
##
## @item
## @var{relres} is the ratio of the final residual to its initial value,
## measured in the Euclidean norm.
##
## @item
## @var{iter} is the actual number of iterations performed.
##
## @item
## @var{resvec} describes the convergence history of the method, so that
## @code{@var{resvec} (i)} contains the Euclidean norms of the residual after
## the (@var{i}-1)-th iteration, @code{@var{i} = 1,2, @dots{}, @var{iter}+1}.
## @end itemize
##
## Let us consider a trivial problem with a diagonal matrix (we exploit the
## sparsity of A)
##
## @example
## @group
## n = 10;
## A = sparse (diag (1:n));
## b = rand (N, 1);
## @end group
## @end example
##
## @sc{Example 1:} Simplest use of @code{pcr}
##
## @example
## x = pcr (A, b)
## @end example
##
## @sc{Example 2:} @code{pcr} with a function which computes
## @code{@var{A} * @var{x}}.
##
## @example
## @group
## function y = apply_a (x)
##   y = [1:10]' .* x;
## endfunction
##
## x = pcr ("apply_a", b)
## @end group
## @end example
##
## @sc{Example 3:}  Preconditioned iteration, with full diagnostics.  The
## preconditioner (quite strange, because even the original matrix
## @var{A} is trivial) is defined as a function
##
## @example
## @group
## function y = apply_m (x)
##   k = floor (length (x) - 2);
##   y = x;
##   y(1:k) = x(1:k) ./ [1:k]';
## endfunction
##
## [x, flag, relres, iter, resvec] = ...
##                    pcr (A, b, [], [], "apply_m")
## semilogy ([1:iter+1], resvec);
## @end group
## @end example
##
## @sc{Example 4:} Finally, a preconditioner which depends on a
## parameter @var{k}.
##
## @example
## @group
## function y = apply_m (x, varargin)
##   k = varargin@{1@};
##   y = x;
##   y(1:k) = x(1:k) ./ [1:k]';
## endfunction
##
## [x, flag, relres, iter, resvec] = ...
##                    pcr (A, b, [], [], "apply_m"', [], 3)
## @end group
## @end example
##
## Reference:
##
## @nospell{W. Hackbusch}, @cite{Iterative Solution of Large Sparse
## Systems of Equations}, section 9.5.4; @nospell{Springer}, 1994
##
## @seealso{sparse, pcg}
## @end deftypefn

function [x, flag, relres, iter, resvec] = pcr (A, b, tol, maxit, m, x0, varargin)

  breakdown = false;

  if (nargin < 6 || isempty (x0))
    x = zeros (size (b));
  else
    x = x0;
  endif

  if (nargin < 5)
    m = [];
  endif

  if (nargin < 4 || isempty (maxit))
    maxit = 20;
  endif

  maxit += 2;

  if (nargin < 3 || isempty (tol))
    tol = 1e-6;
  endif

  if (nargin < 2)
    print_usage ();
  endif

  ##  init
  if (isnumeric (A))            # is A a matrix?
    r = b - A*x;
  else                          # then A should be a function!
    r = b - feval (A, x, varargin{:});
  endif

  if (isnumeric (m))            # is M a matrix?
    if (isempty (m))            # if M is empty, use no precond
      p = r;
    else                        # otherwise, apply the precond
      p = m \ r;
    endif
  else                          # then M should be a function!
    p = feval (m, r, varargin{:});
  endif

  iter = 2;

  b_bot_old = 1;
  q_old = p_old = s_old = zeros (size (x));

  if (isnumeric (A))            # is A a matrix?
    q = A * p;
  else                          # then A should be a function!
    q = feval (A, p, varargin{:});
  endif

  resvec(1) = abs (norm (r));

  ## iteration
  while (resvec(iter-1) > tol*resvec(1) && iter < maxit)

    if (isnumeric (m))          # is M a matrix?
      if (isempty (m))          # if M is empty, use no precond
        s = q;
      else                      # otherwise, apply the precond
        s = m \ q;
      endif
    else                        # then M should be a function!
      s = feval (m, q, varargin{:});
    endif
    b_top = r' * s;
    b_bot = q' * s;

    if (b_bot == 0.0)
      breakdown = true;
      break;
    endif
    lambda = b_top / b_bot;

    x += lambda*p;
    r -= lambda*q;

    if (isnumeric (A))          # is A a matrix?
      t = A*s;
    else                        # then A should be a function!
      t = feval (A, s, varargin{:});
    endif

    alpha0 = (t'*s) / b_bot;
    alpha1 = (t'*s_old) / b_bot_old;

    p_temp = p;
    q_temp = q;

    p = s - alpha0*p - alpha1*p_old;
    q = t - alpha0*q - alpha1*q_old;

    s_old = s;
    p_old = p_temp;
    q_old = q_temp;
    b_bot_old = b_bot;

    resvec(iter) = abs (norm (r));
    iter += 1;
  endwhile

  flag = 0;
  relres = resvec(iter-1) ./ resvec(1);
  iter -= 2;
  if (iter >= maxit-2)
    flag = 1;
    if (nargout < 2)
      warning ("pcr: maximum number of iterations (%d) reached\n", iter);
      warning ("pcr: the initial residual norm was reduced %g times\n",
               1.0/relres);
    endif
  elseif (nargout < 2 && ! breakdown)
    fprintf (stderr, "pcr: converged in %d iterations. \n", iter);
    fprintf (stderr, "pcr: the initial residual norm was reduced %g times\n",
             1.0 / relres);
  endif

  if (breakdown)
    flag = 3;
    if (nargout < 2)
      warning ("pcr: breakdown occurred:\n");
      warning ("system matrix singular or preconditioner indefinite?\n");
    endif
  endif

endfunction


%!demo
%! ## Simplest usage of PCR (see also 'help pcr')
%!
%! N = 20;
%! A = diag (linspace (-3.1,3,N)); b = rand (N,1);
%! y = A \ b;  # y is the true solution
%! x = pcr (A,b);
%! printf ("The solution relative error is %g\n", norm (x-y) / norm (y));
%!
%! ## You shouldn't be afraid if PCR issues some warning messages in this
%! ## example: watch out in the second example, why it takes N iterations
%! ## of PCR to converge to (a very accurate, by the way) solution.

%!demo
%! ## Full output from PCR
%! ## We use this output to plot the convergence history
%!
%! N = 20;
%! A = diag (linspace (-3.1,30,N)); b = rand (N,1);
%! X = A \ b;  # X is the true solution
%! [x, flag, relres, iter, resvec] = pcr (A,b);
%! printf ("The solution relative error is %g\n", norm (x-X) / norm (X));
%! clf;
%! title ("Convergence history");
%! xlabel ("Iteration"); ylabel ("log (||b-Ax||/||b||)");
%! semilogy ([0:iter], resvec/resvec(1), "o-g;relative residual;");

%!demo
%! ## Full output from PCR
%! ## We use indefinite matrix based on the Hilbert matrix, with one
%! ## strongly negative eigenvalue
%! ## Hilbert matrix is extremely ill conditioned, so is ours,
%! ## and that's why PCR WILL have problems
%!
%! N = 10;
%! A = hilb (N); A(1,1) = -A(1,1); b = rand (N,1);
%! X = A \ b;  # X is the true solution
%! printf ("Condition number of A is   %g\n", cond (A));
%! [x, flag, relres, iter, resvec] = pcr (A,b,[],200);
%! if (flag == 3)
%!   printf ("PCR breakdown.  System matrix is [close to] singular\n");
%! endif
%! clf;
%! title ("Convergence history");
%! xlabel ("Iteration"); ylabel ("log (||b-Ax||)");
%! semilogy ([0:iter], resvec, "o-g;absolute residual;");

%!demo
%! ## Full output from PCR
%! ## We use an indefinite matrix based on the 1-D Laplacian matrix for A,
%! ## and here we have cond (A) = O(N^2)
%! ## That's the reason we need some preconditioner; here we take
%! ## a very simple and not powerful Jacobi preconditioner,
%! ## which is the diagonal of A.
%!
%! ## Note that we use here indefinite preconditioners!
%!
%! N = 100;
%! ## Form 1-D Laplacian matrix
%! A = 2 * eye (N,N);
%! A(2:(N+1):end) = -1;
%! A((N+1):(N+1):end) = -1;
%!
%! A = [A, zeros(size(A)); zeros(size(A)), -A];
%! b = rand (2*N,1);
%! X = A \ b;  # X is the true solution
%! maxit = 80;
%! printf ("System condition number is %g\n", cond (A));
%! ## No preconditioner: the convergence is very slow!
%!
%! [x, flag, relres, iter, resvec] = pcr (A,b,[],maxit);
%! clf;
%! title ("Convergence history");
%! xlabel ("Iteration"); ylabel ("log (||b-Ax||)");
%! semilogy ([0:iter], resvec, "o-g;NO preconditioning: absolute residual;");
%!
%! pause (1);
%! ## Test Jacobi preconditioner: it will not help much!!!
%!
%! M = diag (diag (A)); # Jacobi preconditioner
%! [x, flag, relres, iter, resvec] = pcr (A,b,[],maxit,M);
%! hold on;
%! semilogy ([0:iter],resvec,"o-r;JACOBI preconditioner: absolute residual;");
%!
%! pause (1);
%! ## Test nonoverlapping block Jacobi preconditioner: this one should give
%! ## some convergence speedup!
%!
%! M = zeros (N,N); k = 4;
%! for i=1:k:N # get k x k diagonal blocks of A
%!   M(i:i+k-1,i:i+k-1) = A(i:i+k-1,i:i+k-1);
%! endfor
%! M = [M, zeros(size (M)); zeros(size(M)), -M];
%! [x, flag, relres, iter, resvec] = pcr (A,b,[],maxit,M);
%! semilogy ([0:iter], resvec, "o-b;BLOCK JACOBI preconditioner: absolute residual;");
%! hold off;

%!test
%! ## solve small indefinite diagonal system
%!
%! N = 10;
%! A = diag (linspace (-10.1,10,N)); b = ones (N,1);
%! X = A \ b;  # X is the true solution
%! [x, flag] = pcr (A,b,[],N+1);
%! assert (norm (x-X) / norm (X) < 1e-10);
%! assert (flag, 0);

%!test
%! ## solve tridiagonal system, do not converge in default 20 iterations
%! ## should perform max allowable default number of iterations
%!
%! N = 100;
%! ## Form 1-D Laplacian matrix
%! A = 2 * eye (N,N);
%! A(2:(N+1):end) = -1;
%! A((N+1):(N+1):end) = -1;
%! b = ones (N,1);
%! X = A \ b;  # X is the true solution
%! [x, flag, relres, iter, resvec] = pcr (A,b,1e-12);
%! assert (flag, 1);
%! assert (relres > 0.6);
%! assert (iter, 20);

%!test
%! ## solve tridiagonal system with "perfect" preconditioner
%! ## converges in one iteration
%!
%! N = 100;
%! ## Form 1-D Laplacian matrix
%! A = 2 * eye (N,N);
%! A(2:(N+1):end) = -1;
%! A((N+1):(N+1):end) = -1;
%! b = ones (N,1);
%! X = A \ b;  # X is the true solution
%! [x, flag, relres, iter] = pcr (A,b,[],[],A,b);
%! assert (norm (x-X) / norm (X) < 1e-6);
%! assert (relres < 1e-6);
%! assert (flag, 0);
%! assert (iter, 1); # should converge in one iteration