view libinterp/octave-value/ov-ch-mat.cc @ 28131:4c21f99b4ad5

handle interleaved complex data and new typed data access functions for mex * mexproto.h, mex.cc, mxarray.h (mxMakeArrayReal, mxMakeArrayComplex, mxGetDoubles, mxGetSingles, mxGetInt8s, mxGetInt16s, mxGetInt32s, mxGetInt64s, mxGetUint8s, mxGetUint16s, mxGetUint32s, mxGetUint64s, mxGetComplexDoubles, mxGetComplexSingles, mxSetDoubles, mxSetSingles, mxSetInt8s, mxSetInt16s, mxSetInt32s, mxSetInt64s, mxSetUint8s, mxSetUint16s, mxSetUint32s, mxSetUint64s, mxSetComplexDoubles, mxSetComplexSingles): New functions. Provide corresponding member functions in mxArray class hierarchy to handle the actual operations. (mxGetComplexInt8s, mxGetComplexInt16s, mxGetComplexInt32s, mxGetComplexInt64s, mxGetComplexUint8s, mxGetComplexUint16s, mxGetComplexUint32s, mxGetComplexUint64s, mxSetComplexInt8s, mxSetComplexInt16s, mxSetComplexInt32s, mxSetComplexInt64s, mxSetComplexUint8s, mxSetComplexUint16s, mxSetComplexUint32s, mxSetComplexUint64s): Add prototypes and functions, but leave commented out since we don't have complex integer data. (class mxArray_number, class mxArray_sparse): Handle interleaved complex data. In mxArray_octave_value and mxArray_matlab constructors, handle interleaved flag in constructor to determine data layout to use when creating mxArray_number or mxArray_sparse objects. (mex::make_value): Check flag in mex function to determine whether to create arrays with interleaved complex. * ov.h, ov.cc, ov-base.h, ov-base.cc, ov-base-diag.h, ov-base-diag.cc, ov-bool-mat.h, ov-bool-mat.cc, ov-bool-sparse.h, ov-bool-sparse.cc, ov-bool.h, ov-bool.cc, ov-cell.h, ov-cell.cc, ov-ch-mat.h, ov-ch-mat.cc, ov-class.h, ov-class.cc, ov-complex.h, ov-complex.cc, ov-cx-mat.h, ov-cx-mat.cc, ov-cx-sparse.h, ov-cx-sparse.cc, ov-float.h, ov-float.cc, ov-flt-complex.h, ov-flt-complex.cc, ov-flt-cx-mat.h, ov-flt-cx-mat.cc, ov-flt-re-mat.h, ov-flt-re-mat.cc, ov-intx.h, ov-lazy-idx.h, ov-perm.h, ov-perm.cc, ov-range.h, ov-range.cc, ov-re-mat.h, ov-re-mat.cc, ov-re-sparse.h, ov-re-sparse.cc, ov-scalar.h, ov-scalar.cc, ov-struct.h, ov-struct.cc: In all as_mxArray methods, handle new interleaved input to optionally create objects that will use interleaved complex data.
author John W. Eaton <jwe@octave.org>
date Tue, 18 Feb 2020 13:16:41 -0500
parents bd51beb6205e
children 7854d5752dd2
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1996-2020 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <cctype>
#include <ostream>

#include "dNDArray.h"
#include "fNDArray.h"
#include "int8NDArray.h"
#include "int16NDArray.h"
#include "int32NDArray.h"
#include "int64NDArray.h"
#include "uint8NDArray.h"
#include "uint16NDArray.h"
#include "uint32NDArray.h"
#include "uint64NDArray.h"

#include "lo-ieee.h"
#include "mx-base.h"
#include "unicase-wrappers.h"
#include "unictype-wrappers.h"
#include "unistr-wrappers.h"

#include "mxarray.h"
#include "ov-base.h"
#include "ov-base-mat.h"
#include "ov-base-mat.cc"
#include "ov-ch-mat.h"
#include "errwarn.h"
#include "pr-output.h"

template class octave_base_matrix<charNDArray>;

idx_vector
octave_char_matrix::index_vector (bool /* require_integers */) const
{
  const char *p = matrix.data ();
  if (numel () == 1 && *p == ':')
    return idx_vector (':');
  else
    return idx_vector (array_value (true));
}

double
octave_char_matrix::double_value (bool) const
{
  if (rows () == 0 || columns () == 0)
    err_invalid_conversion ("character matrix", "real scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "character matrix", "real scalar");

  return static_cast<unsigned char> (matrix(0, 0));
}

float
octave_char_matrix::float_value (bool) const
{
  if (rows () == 0 && columns () == 0)
    err_invalid_conversion ("character matrix", "real scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "character matrix", "real scalar");

  return static_cast<unsigned char> (matrix(0, 0));
}

octave_int64
octave_char_matrix::int64_scalar_value () const
{
  octave_int64 retval = 0;

  if (rows () == 0 || columns () == 0)
    err_invalid_conversion ("character matrix", "int64 scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "character matrix", "int64 scalar");

  retval = octave_int64 (matrix(0, 0));

  return retval;
}

octave_uint64
octave_char_matrix::uint64_scalar_value () const
{
  octave_uint64 retval = 0;

  if (rows () == 0 || columns () == 0)
    err_invalid_conversion ("character matrix", "uint64 scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "character matrix", "uint64 scalar");

  retval = octave_uint64 (matrix(0, 0));

  return retval;
}

Complex
octave_char_matrix::complex_value (bool) const
{
  if (rows () == 0 && columns () == 0)
    err_invalid_conversion ("character matrix", "complex scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "character matrix", "complex scalar");

  return Complex (static_cast<unsigned char> (matrix(0, 0)), 0);
}

FloatComplex
octave_char_matrix::float_complex_value (bool) const
{
  float tmp = lo_ieee_float_nan_value ();

  FloatComplex retval (tmp, tmp);

  if (rows () == 0 || columns () == 0)
    err_invalid_conversion ("character matrix", "complex scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "character matrix", "complex scalar");

  retval = static_cast<unsigned char> (matrix(0, 0));

  return retval;
}

octave_value
octave_char_matrix::as_double (void) const
{
  return NDArray (matrix);
}

octave_value
octave_char_matrix::as_single (void) const
{
  return FloatNDArray (matrix);
}

octave_value
octave_char_matrix::as_int8 (void) const
{
  return int8NDArray (matrix);
}

octave_value
octave_char_matrix::as_int16 (void) const
{
  return int16NDArray (matrix);
}

octave_value
octave_char_matrix::as_int32 (void) const
{
  return int32NDArray (matrix);
}

octave_value
octave_char_matrix::as_int64 (void) const
{
  return int64NDArray (matrix);
}

octave_value
octave_char_matrix::as_uint8 (void) const
{
  return uint8NDArray (matrix);
}

octave_value
octave_char_matrix::as_uint16 (void) const
{
  return uint16NDArray (matrix);
}

octave_value
octave_char_matrix::as_uint32 (void) const
{
  return uint32NDArray (matrix);
}

octave_value
octave_char_matrix::as_uint64 (void) const
{
  return uint64NDArray (matrix);
}

void
octave_char_matrix::print_raw (std::ostream& os,
                               bool pr_as_read_syntax) const
{
  octave_print_internal (os, matrix, pr_as_read_syntax,
                         current_print_indent_level ());
}

mxArray *
octave_char_matrix::as_mxArray (bool interleaved) const
{
  mxArray *retval = new mxArray (interleaved, mxCHAR_CLASS, dims (), mxREAL);

  mxChar *pd = static_cast<mxChar *> (retval->get_data ());

  mwSize nel = numel ();

  const char *pdata = matrix.data ();

  for (mwIndex i = 0; i < nel; i++)
    pd[i] = pdata[i];

  return retval;
}

// The C++ standard guarantees cctype defines functions, not macros (and
// hence macros *CAN'T* be defined if only cctype is included) so
// there's no need to fuck around.  The exceptions are isascii and
// toascii, which are not C++.  Oddly enough, all those character
// functions are int (*) (int), even in C++.  Wicked!
static inline int xisascii (int c)
{
#if defined (HAVE_ISASCII)
  return isascii (c);
#else
  return (c >= 0x00 && c <= 0x7f);
#endif
}

octave_value
octave_char_matrix::map (unary_mapper_t umap) const
{
  octave_value retval;

  switch (umap)
    {
#define STRING_MAPPER(UMAP,FCN,TYPE)                                  \
    case umap_ ## UMAP:                                               \
      return octave_value (matrix.map<TYPE, int (&) (int)> (FCN))

    STRING_MAPPER (xisascii, xisascii, bool);

#define STRING_U8_MAPPER(UMAP,FCN)                                             \
    case umap_ ## UMAP:                                                        \
      {                                                                        \
        charNDArray in_m = matrix;                                             \
        Array<octave_idx_type> p (dim_vector (matrix.ndims (), 1));            \
        if (matrix.ndims () > 1)                                               \
          {                                                                    \
            for (octave_idx_type i=0; i < matrix.ndims (); i++)                \
              p(i) = i;                                                        \
            p(0) = 1;                                                          \
            p(1) = 0;                                                          \
            in_m = matrix.permute (p);                                         \
          }                                                                    \
        boolNDArray b_array = boolNDArray (in_m.dims ());                      \
        const uint8_t *in = reinterpret_cast<const uint8_t *> (in_m.data ());  \
        uint32_t uc;                                                           \
        for (octave_idx_type i = 0; i < in_m.numel (); )                       \
        {                                                                      \
          int mblen = octave_u8_strmbtouc_wrapper (&uc, in + i);               \
          if (mblen < 1)                                                       \
            mblen = 1;                                                         \
          bool is_upper = FCN (uc);                                            \
          for (int j = 0; j < mblen; j++)                                      \
            b_array(i+j) = is_upper;                                           \
          i += mblen;                                                          \
        }                                                                      \
        return octave_value ((matrix.ndims () > 1) ? b_array.permute (p, true) \
                                                   : b_array);                 \
      }

    STRING_U8_MAPPER (xisalnum, octave_uc_is_alnum_wrapper);
    STRING_U8_MAPPER (xisalpha, octave_uc_is_alpha_wrapper);
    STRING_U8_MAPPER (xiscntrl, octave_uc_is_cntrl_wrapper);
    STRING_U8_MAPPER (xisdigit, octave_uc_is_digit_wrapper);
    STRING_U8_MAPPER (xisgraph, octave_uc_is_graph_wrapper);
    STRING_U8_MAPPER (xislower, octave_uc_is_lower_wrapper);
    STRING_U8_MAPPER (xisprint, octave_uc_is_print_wrapper);
    STRING_U8_MAPPER (xispunct, octave_uc_is_punct_wrapper);
    STRING_U8_MAPPER (xisspace, octave_uc_is_space_wrapper);
    STRING_U8_MAPPER (xisupper, octave_uc_is_upper_wrapper);
    STRING_U8_MAPPER (xisxdigit, octave_uc_is_xdigit_wrapper);

#define STRING_U8_FCN(UMAP,U8_FCN,STD_FCN)                                     \
    case umap_ ## UMAP:                                                        \
      {                                                                        \
        charNDArray in_m = matrix;                                             \
        Array<octave_idx_type> p (dim_vector (matrix.ndims (), 1));            \
        if (matrix.ndims () > 1)                                               \
          {                                                                    \
            for (octave_idx_type i=0; i < matrix.ndims (); i++)                \
              p(i) = i;                                                        \
            p(0) = 1;                                                          \
            p(1) = 0;                                                          \
            in_m = matrix.permute (p);                                         \
          }                                                                    \
        size_t output_length = in_m.numel ();                                  \
        charNDArray ch_array = charNDArray (in_m.dims ());                     \
        const uint8_t *in = reinterpret_cast<const uint8_t *> (in_m.data ());  \
        uint8_t *buf = reinterpret_cast<uint8_t *> (ch_array.fortran_vec ());  \
        U8_FCN (in, matrix.numel (), nullptr, buf, &output_length);            \
        if (output_length != static_cast<size_t> (matrix.numel ()))            \
          {                                                                    \
            warning_with_id ("Octave:multi_byte_char_length",                  \
                             "UMAP: Possible multi-byte error.");              \
            return octave_value (matrix.map<char, int (&) (int)> (STD_FCN));   \
          }                                                                    \
        return octave_value ((matrix.ndims () > 1) ? ch_array.permute (p, true)\
                                                   : ch_array);                \
      }

    STRING_U8_FCN (xtolower, octave_u8_tolower_wrapper, std::tolower);
    STRING_U8_FCN (xtoupper, octave_u8_toupper_wrapper, std::toupper);

    // For Matlab compatibility, these should work on ASCII values
    // without error or warning.
    case umap_abs:
    case umap_ceil:
    case umap_fix:
    case umap_floor:
    case umap_imag:
    case umap_isinf:
    case umap_isnan:
    case umap_real:
    case umap_round:
      {
        octave_matrix m (array_value (true));
        return m.map (umap);
      }

    default:
      error ("%s: argument must be numeric", get_umap_name (umap));
      break;
    }

  return retval;
}