view scripts/plot/util/meshgrid.m @ 20115:7e0e8fb16201

Overhaul close.m to add "force" argument (bug #44324) * close.m: Emit an error if there is no figure handle or "all" argument given. Check for "force" argument and delete the requested figure handles rather than calling closereqfcn. Add BIST input validation tests. Add new calling forms and explanation of "force" to docstring.
author Rik <rik@octave.org>
date Wed, 22 Apr 2015 08:41:50 -0700
parents 9fc020886ae9
children
line wrap: on
line source

## Copyright (C) 1996-2015 John W. Eaton
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {[@var{xx}, @var{yy}] =} meshgrid (@var{x}, @var{y})
## @deftypefnx {Function File} {[@var{xx}, @var{yy}, @var{zz}] =} meshgrid (@var{x}, @var{y}, @var{z})
## @deftypefnx {Function File} {[@var{xx}, @var{yy}] =} meshgrid (@var{x})
## @deftypefnx {Function File} {[@var{xx}, @var{yy}, @var{zz}] =} meshgrid (@var{x})
## Given vectors of @var{x} and @var{y} coordinates, return matrices @var{xx}
## and @var{yy} corresponding to a full 2-D grid.
##
## The rows of @var{xx} are copies of @var{x}, and the columns of @var{yy} are
## copies of @var{y}.  If @var{y} is omitted, then it is assumed to be the same
## as @var{x}.
##
## If the optional @var{z} input is given, or @var{zz} is requested, then the
## output will be a full 3-D grid.
##
## @code{meshgrid} is most frequently used to produce input for a 2-D or 3-D
## function that will be plotted.  The following example creates a surface
## plot of the ``sombrero'' function.
##
## @example
## @group
## f = @@(x,y) sin (sqrt (x.^2 + y.^2)) ./ sqrt (x.^2 + y.^2);
## range = linspace (-8, 8, 41);
## [@var{X}, @var{Y}] = meshgrid (range, range);
## Z = f (X, Y);
## surf (X, Y, Z);
## @end group
## @end example
##
## Programming Note: @code{meshgrid} is restricted to 2-D or 3-D grid
## generation.  The @code{ndgrid} function will generate 1-D through N-D
## grids.  However, the functions are not completely equivalent.  If @var{x}
## is a vector of length M and @var{y} is a vector of length N, then
## @code{meshgrid} will produce an output grid which is NxM@.  @code{ndgrid}
## will produce an output which is @nospell{MxN} (transpose) for the same
## input.  Some core functions expect @code{meshgrid} input and others expect
## @code{ndgrid} input.  Check the documentation for the function in question
## to determine the proper input format.
## @seealso{ndgrid, mesh, contour, surf}
## @end deftypefn

## Author: jwe

function [xx, yy, zz] = meshgrid (x, y, z)

  if (nargin == 0 || nargin > 3)
    print_usage ();
  endif

  if (nargin < 2)
    y = x;
  endif

  ## Use repmat to ensure that result values have the same type as the inputs

  if (nargout < 3)
    if (! (isvector (x) && isvector (y)))
      error ("meshgrid: X and Y must be vectors");
    endif
    xx = repmat (x(:).', length (y), 1);
    yy = repmat (y(:), 1, length (x));
  else
    if (nargin < 3)
      z = y;
    endif
    if (! (isvector (x) && isvector (y) && isvector (z)))
      error ("meshgrid: X, Y, and Z must be vectors");
    endif
    lenx = length (x);
    leny = length (y);
    lenz = length (z);
    xx = repmat (repmat (x(:).', leny, 1), [1, 1, lenz]);
    yy = repmat (repmat (y(:), 1, lenx), [1, 1, lenz]);
    zz = reshape (repmat (z(:).', lenx*leny, 1)(:), leny, lenx, lenz);
  endif

endfunction


%!test
%! x = 1:2;
%! y = 1:3;
%! z = 1:4;
%! [XX, YY, ZZ] = meshgrid (x, y, z);
%! assert (size_equal (XX, YY, ZZ));
%! assert (ndims (XX), 3);
%! assert (size (XX), [3, 2, 4]);
%! assert (XX(1) * YY(1) * ZZ(1), x(1) * y(1) * z(1));
%! assert (XX(end) * YY(end) * ZZ(end), x(end) * y(end) * z(end));

%!test
%! x = 1:2;
%! y = 1:3;
%! [XX, YY] = meshgrid (x, y);
%! assert (size_equal (XX, YY));
%! assert (ndims (XX), 2);
%! assert (size (XX), [3, 2]);
%! assert (XX(1) * YY(1), x(1) * y(1));
%! assert (XX(end) * YY(end), x(end) * y(end));

%!test
%! x = 1:3;
%! [XX1, YY1] = meshgrid (x, x);
%! [XX2, YY2] = meshgrid (x);
%! assert (size_equal (XX1, XX2, YY1, YY2));
%! assert (ndims (XX1), 2);
%! assert (size (XX1), [3, 3]);
%! assert (XX1, XX2);
%! assert (YY1, YY2);

## Test input validation
%!error meshgrid ()
%!error meshgrid (1,2,3,4)
%!error <X and Y must be vectors> meshgrid (ones (2,2), 1:3)
%!error <X and Y must be vectors> meshgrid (1:3, ones (2,2))
%!error <X, Y, and Z must be vectors> [X,Y,Z] = meshgrid (1:3, 1:3, ones (2,2))