view libinterp/corefcn/dot.cc @ 18961:52e01aa1fe8b

Overhaul FLTK pan, rotate, zoom * graphics.in.h: add axes properties pan, rotate3d, mouse_wheel_zoom and custom set_pan which disables rotate3d. * graphics.cc: add custom set_rotate3d and link with pan property. Disable rotate3d for 2D plots. * __init_fltk__.cc: replace gui_mode and mouse_wheel_zoom with axes properties pan, rotate3d and mouse_wheel_zoom. Disable pan for legends, move them instead. * __add_default_menu__.m: Add new menu entries for new pan and zoom modes. * findall.m: Update test for added uimenus. Each axes now has its own properties for interactive GUI control of pan, rotate3d and mouse_wheel_zoom. Now it's possible to have several figures and set pan for the 2D plot in figure x and rotate3d for the 3D plot in figure y. There are two new pan modes: "Pan x only" and "Pan y only". The toolbar buttons "P" and "R" set pan and rotate3d for the last clicked axes object or the object below the center of the canvas if none was clicked yet. The legend can now be moved with the mouse.
author Andreas Weber <andy.weber.aw@gmail.com>
date Sun, 27 Jul 2014 22:31:14 +0200
parents 78fac67300e8
children
line wrap: on
line source

/*

Copyright (C) 2009-2013 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "f77-fcn.h"
#include "mx-base.h"
#include "error.h"
#include "defun.h"
#include "parse.h"

extern "C"
{
  F77_RET_T
  F77_FUNC (ddot3, DDOT3) (const octave_idx_type&, const octave_idx_type&,
                           const octave_idx_type&, const double*,
                           const double*, double*);

  F77_RET_T
  F77_FUNC (sdot3, SDOT3) (const octave_idx_type&, const octave_idx_type&,
                           const octave_idx_type&, const float*,
                           const float*, float*);

  F77_RET_T
  F77_FUNC (zdotc3, ZDOTC3) (const octave_idx_type&, const octave_idx_type&,
                             const octave_idx_type&, const Complex*,
                             const Complex*, Complex*);

  F77_RET_T
  F77_FUNC (cdotc3, CDOTC3) (const octave_idx_type&, const octave_idx_type&,
                             const octave_idx_type&, const FloatComplex*,
                             const FloatComplex*, FloatComplex*);

  F77_RET_T
  F77_FUNC (dmatm3, DMATM3) (const octave_idx_type&, const octave_idx_type&,
                             const octave_idx_type&, const octave_idx_type&,
                             const double*, const double*, double*);

  F77_RET_T
  F77_FUNC (smatm3, SMATM3) (const octave_idx_type&, const octave_idx_type&,
                             const octave_idx_type&, const octave_idx_type&,
                             const float*, const float*, float*);

  F77_RET_T
  F77_FUNC (zmatm3, ZMATM3) (const octave_idx_type&, const octave_idx_type&,
                             const octave_idx_type&, const octave_idx_type&,
                             const Complex*, const Complex*, Complex*);

  F77_RET_T
  F77_FUNC (cmatm3, CMATM3) (const octave_idx_type&, const octave_idx_type&,
                             const octave_idx_type&, const octave_idx_type&,
                             const FloatComplex*, const FloatComplex*,
                             FloatComplex*);
}

static void
get_red_dims (const dim_vector& x, const dim_vector& y, int dim,
              dim_vector& z, octave_idx_type& m, octave_idx_type& n,
              octave_idx_type& k)
{
  int nd = x.length ();
  assert (nd == y.length ());
  z = dim_vector::alloc (nd);
  m = 1, n = 1, k = 1;
  for (int i = 0; i < nd; i++)
    {
      if (i < dim)
        {
          z(i) = x(i);
          m *= x(i);
        }
      else if (i > dim)
        {
          z(i) = x(i);
          n *= x(i);
        }
      else
        {
          k = x(i);
          z(i) = 1;
        }
    }
}

DEFUN (dot, args, ,
       "-*- texinfo -*-\n\
@deftypefn {Built-in Function} {} dot (@var{x}, @var{y}, @var{dim})\n\
Compute the dot product of two vectors.  If @var{x} and @var{y}\n\
are matrices, calculate the dot products along the first\n\
non-singleton dimension.  If the optional argument @var{dim} is\n\
given, calculate the dot products along this dimension.\n\
\n\
This is equivalent to\n\
@code{sum (conj (@var{X}) .* @var{Y}, @var{dim})},\n\
but avoids forming a temporary array and is faster.  When @var{X} and\n\
@var{Y} are column vectors, the result is equivalent to\n\
@code{@var{X}' * @var{Y}}.\n\
@seealso{cross, divergence}\n\
@end deftypefn")
{
  octave_value retval;
  int nargin = args.length ();

  if (nargin < 2 || nargin > 3)
    {
      print_usage ();
      return retval;
    }

  octave_value argx = args(0);
  octave_value argy = args(1);

  if (argx.is_numeric_type () && argy.is_numeric_type ())
    {
      dim_vector dimx = argx.dims ();
      dim_vector dimy = argy.dims ();
      bool match = dimx == dimy;
      if (! match && nargin == 2
          && dimx.is_vector () && dimy.is_vector ())
        {
          // Change to column vectors.
          dimx = dimx.redim (1);
          argx = argx.reshape (dimx);
          dimy = dimy.redim (1);
          argy = argy.reshape (dimy);
          match = ! error_state && (dimx == dimy);
        }

      if (match)
        {
          int dim;
          if (nargin == 2)
            dim = dimx.first_non_singleton ();
          else
            dim = args(2).int_value (true) - 1;

          if (error_state)
            ;
          else if (dim < 0)
            error ("dot: DIM must be a valid dimension");
          else
            {
              octave_idx_type m, n, k;
              dim_vector dimz;
              if (argx.is_complex_type () || argy.is_complex_type ())
                {
                  if (argx.is_single_type () || argy.is_single_type ())
                    {
                      FloatComplexNDArray x = argx.float_complex_array_value ();
                      FloatComplexNDArray y = argy.float_complex_array_value ();
                      get_red_dims (dimx, dimy, dim, dimz, m, n, k);
                      FloatComplexNDArray z(dimz);
                      if (! error_state)
                        F77_XFCN (cdotc3, CDOTC3, (m, n, k,
                                                   x.data (), y.data (),
                                                   z.fortran_vec ()));
                      retval = z;
                    }
                  else
                    {
                      ComplexNDArray x = argx.complex_array_value ();
                      ComplexNDArray y = argy.complex_array_value ();
                      get_red_dims (dimx, dimy, dim, dimz, m, n, k);
                      ComplexNDArray z(dimz);
                      if (! error_state)
                        F77_XFCN (zdotc3, ZDOTC3, (m, n, k,
                                                   x.data (), y.data (),
                                                   z.fortran_vec ()));
                      retval = z;
                    }
                }
              else if (argx.is_float_type () && argy.is_float_type ())
                {
                  if (argx.is_single_type () || argy.is_single_type ())
                    {
                      FloatNDArray x = argx.float_array_value ();
                      FloatNDArray y = argy.float_array_value ();
                      get_red_dims (dimx, dimy, dim, dimz, m, n, k);
                      FloatNDArray z(dimz);
                      if (! error_state)
                        F77_XFCN (sdot3, SDOT3, (m, n, k, x.data (), y.data (),
                                                 z.fortran_vec ()));
                      retval = z;
                    }
                  else
                    {
                      NDArray x = argx.array_value ();
                      NDArray y = argy.array_value ();
                      get_red_dims (dimx, dimy, dim, dimz, m, n, k);
                      NDArray z(dimz);
                      if (! error_state)
                        F77_XFCN (ddot3, DDOT3, (m, n, k, x.data (), y.data (),
                                                 z.fortran_vec ()));
                      retval = z;
                    }
                }
              else
                {
                  // Non-optimized evaluation.
                  octave_value_list tmp;
                  tmp(1) = dim + 1;
                  tmp(0) = do_binary_op (octave_value::op_el_mul, argx, argy);
                  if (! error_state)
                    {
                      tmp = feval ("sum", tmp, 1);
                      if (! tmp.empty ())
                        retval = tmp(0);
                    }
                }
            }
        }
      else
        error ("dot: sizes of X and Y must match");

    }
  else
    error ("dot: X and Y must be numeric");

  return retval;
}

/*
%!assert (dot ([1, 2], [2, 3]), 8)

%!test
%! x = [2, 1; 2, 1];
%! y = [-0.5, 2; 0.5, -2];
%! assert (dot (x, y), [0 0]);

%!test
%! x = [1+i, 3-i; 1-i, 3-i];
%! assert (dot (x, x), [4, 20]);

%!test
%! x = int8 ([1 2]);
%! y = int8 ([2 3]);
%! assert (dot (x, y), 8);

%!test
%! x = int8 ([1 2; 3 4]);
%! y = int8 ([5 6; 7 8]);
%! assert (dot (x, y), [26 44]);
%! assert (dot (x, y, 2), [17; 53]);
%! assert (dot (x, y, 3), [5 12; 21 32]);

%% Test input validation
%!error dot ()
%!error dot (1)
%!error dot (1,2,3,4)
%!error <X and Y must be numeric> dot ({1,2}, [3,4])
%!error <X and Y must be numeric> dot ([1,2], {3,4})
%!error <sizes of X and Y must match> dot ([1 2], [1 2 3])
%!error <sizes of X and Y must match> dot ([1 2]', [1 2 3]')
%!error <sizes of X and Y must match> dot (ones (2,2), ones (2,3))
%!error <DIM must be a valid dimension> dot ([1 2], [1 2], 0)
*/

DEFUN (blkmm, args, ,
       "-*- texinfo -*-\n\
@deftypefn {Built-in Function} {} blkmm (@var{A}, @var{B})\n\
Compute products of matrix blocks.  The blocks are given as\n\
2-dimensional subarrays of the arrays @var{A}, @var{B}.\n\
The size of @var{A} must have the form @code{[m,k,@dots{}]} and\n\
size of @var{B} must be @code{[k,n,@dots{}]}.  The result is\n\
then of size @code{[m,n,@dots{}]} and is computed as follows:\n\
\n\
@example\n\
@group\n\
for i = 1:prod (size (@var{A})(3:end))\n\
  @var{C}(:,:,i) = @var{A}(:,:,i) * @var{B}(:,:,i)\n\
endfor\n\
@end group\n\
@end example\n\
@end deftypefn")
{
  octave_value retval;
  int nargin = args.length ();

  if (nargin != 2)
    {
      print_usage ();
      return retval;
    }

  octave_value argx = args(0);
  octave_value argy = args(1);

  if (argx.is_numeric_type () && argy.is_numeric_type ())
    {
      const dim_vector dimx = argx.dims ();
      const dim_vector dimy = argy.dims ();
      int nd = dimx.length ();
      octave_idx_type m = dimx(0);
      octave_idx_type k = dimx(1);
      octave_idx_type n = dimy(1);
      octave_idx_type np = 1;
      bool match = dimy(0) == k && nd == dimy.length ();
      dim_vector dimz = dim_vector::alloc (nd);
      dimz(0) = m;
      dimz(1) = n;
      for (int i = 2; match && i < nd; i++)
        {
          match = match && dimx(i) == dimy(i);
          dimz(i) = dimx(i);
          np *= dimz(i);
        }

      if (match)
        {
          if (argx.is_complex_type () || argy.is_complex_type ())
            {
              if (argx.is_single_type () || argy.is_single_type ())
                {
                  FloatComplexNDArray x = argx.float_complex_array_value ();
                  FloatComplexNDArray y = argy.float_complex_array_value ();
                  FloatComplexNDArray z(dimz);
                  if (! error_state)
                    F77_XFCN (cmatm3, CMATM3, (m, n, k, np,
                                               x.data (), y.data (),
                                               z.fortran_vec ()));
                  retval = z;
                }
              else
                {
                  ComplexNDArray x = argx.complex_array_value ();
                  ComplexNDArray y = argy.complex_array_value ();
                  ComplexNDArray z(dimz);
                  if (! error_state)
                    F77_XFCN (zmatm3, ZMATM3, (m, n, k, np,
                                               x.data (), y.data (),
                                               z.fortran_vec ()));
                  retval = z;
                }
            }
          else
            {
              if (argx.is_single_type () || argy.is_single_type ())
                {
                  FloatNDArray x = argx.float_array_value ();
                  FloatNDArray y = argy.float_array_value ();
                  FloatNDArray z(dimz);
                  if (! error_state)
                    F77_XFCN (smatm3, SMATM3, (m, n, k, np,
                                               x.data (), y.data (),
                                               z.fortran_vec ()));
                  retval = z;
                }
              else
                {
                  NDArray x = argx.array_value ();
                  NDArray y = argy.array_value ();
                  NDArray z(dimz);
                  if (! error_state)
                    F77_XFCN (dmatm3, DMATM3, (m, n, k, np,
                                               x.data (), y.data (),
                                               z.fortran_vec ()));
                  retval = z;
                }
            }
        }
      else
        error ("blkmm: A and B dimensions don't match: (%s) and (%s)",
               dimx.str ().c_str (), dimy.str ().c_str ());

    }
  else
    error ("blkmm: A and B must be numeric");

  return retval;
}

/*
%!test
%! x(:,:,1) = [1 2; 3 4];
%! x(:,:,2) = [1 1; 1 1];
%! z(:,:,1) = [7 10; 15 22];
%! z(:,:,2) = [2 2; 2 2];
%! assert (blkmm (x,x), z);
*/