view libinterp/corefcn/det.cc @ 18961:52e01aa1fe8b

Overhaul FLTK pan, rotate, zoom * graphics.in.h: add axes properties pan, rotate3d, mouse_wheel_zoom and custom set_pan which disables rotate3d. * graphics.cc: add custom set_rotate3d and link with pan property. Disable rotate3d for 2D plots. * __init_fltk__.cc: replace gui_mode and mouse_wheel_zoom with axes properties pan, rotate3d and mouse_wheel_zoom. Disable pan for legends, move them instead. * __add_default_menu__.m: Add new menu entries for new pan and zoom modes. * findall.m: Update test for added uimenus. Each axes now has its own properties for interactive GUI control of pan, rotate3d and mouse_wheel_zoom. Now it's possible to have several figures and set pan for the 2D plot in figure x and rotate3d for the 3D plot in figure y. There are two new pan modes: "Pan x only" and "Pan y only". The toolbar buttons "P" and "R" set pan and rotate3d for the last clicked axes object or the object below the center of the canvas if none was clicked yet. The legend can now be moved with the mouse.
author Andreas Weber <andy.weber.aw@gmail.com>
date Sun, 27 Jul 2014 22:31:14 +0200
parents 175b392e91fe
children
line wrap: on
line source

/*

Copyright (C) 1996-2013 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "DET.h"

#include "defun.h"
#include "error.h"
#include "gripes.h"
#include "oct-obj.h"
#include "utils.h"
#include "ops.h"

#include "ov-re-mat.h"
#include "ov-cx-mat.h"
#include "ov-flt-re-mat.h"
#include "ov-flt-cx-mat.h"
#include "ov-re-diag.h"
#include "ov-cx-diag.h"
#include "ov-flt-re-diag.h"
#include "ov-flt-cx-diag.h"
#include "ov-perm.h"

#define MAYBE_CAST(VAR, CLASS) \
  const CLASS *VAR = arg.type_id () == CLASS::static_type_id () ? \
   dynamic_cast<const CLASS *> (&arg.get_rep ()) : 0

DEFUN (det, args, nargout,
       "-*- texinfo -*-\n\
@deftypefn  {Built-in Function} {} det (@var{A})\n\
@deftypefnx {Built-in Function} {[@var{d}, @var{rcond}] =} det (@var{A})\n\
Compute the determinant of @var{A}.\n\
\n\
Return an estimate of the reciprocal condition number if requested.\n\
\n\
Routines from @sc{lapack} are used for full matrices and code from\n\
@sc{umfpack} is used for sparse matrices.\n\
\n\
The determinant should not be used to check a matrix for singularity.\n\
For that, use any of the condition number functions: @code{cond},\n\
@code{condest}, @code{rcond}.\n\
@seealso{cond, condest, rcond}\n\
@end deftypefn")
{
  octave_value_list retval;

  int nargin = args.length ();

  if (nargin != 1)
    {
      print_usage ();
      return retval;
    }

  octave_value arg = args(0);

  octave_idx_type nr = arg.rows ();
  octave_idx_type nc = arg.columns ();

  if (nr == 0 && nc == 0)
    {
      retval(0) = 1.0;
      return retval;
    }

  int arg_is_empty = empty_arg ("det", nr, nc);
  if (arg_is_empty < 0)
    return retval;
  if (arg_is_empty > 0)
    return octave_value (Matrix (1, 1, 1.0));


  if (nr != nc)
    {
      gripe_square_matrix_required ("det");
      return retval;
    }

  bool isfloat = arg.is_single_type ();

  if (arg.is_diag_matrix ())
    {
      if (arg.is_complex_type ())
        {
          if (isfloat)
            {
              retval(0) = arg.float_complex_diag_matrix_value ()
                          .determinant ().value ();
              if (nargout > 1)
                retval(1) = arg.float_complex_diag_matrix_value ().rcond ();
            }
          else
            {
              retval(0) = arg.complex_diag_matrix_value ()
                          .determinant ().value ();
              if (nargout > 1)
                retval(1) = arg.complex_diag_matrix_value ().rcond ();
            }
        }
      else
        {
          if (isfloat)
            {
              retval(0) = arg.float_diag_matrix_value ()
                          .determinant ().value ();
              if (nargout > 1)
                retval(1) = arg.float_diag_matrix_value ().rcond ();
            }
          else
            {
              retval(0) = arg.diag_matrix_value ().determinant ().value ();
              if (nargout > 1)
                retval(1) = arg.diag_matrix_value ().rcond ();
            }
        }
    }
  else if (arg.is_perm_matrix ())
    {
      retval(0) = static_cast<double> (arg.perm_matrix_value ().determinant ());
      if (nargout > 1)
        retval(1) = 1.0;
    }
  else if (arg.is_single_type ())
    {
      if (arg.is_real_type ())
        {
          octave_idx_type info;
          float rcond = 0.0;
          // Always compute rcond, so we can detect numerically
          // singular matrices.
          FloatMatrix m = arg.float_matrix_value ();
          if (! error_state)
            {
              MAYBE_CAST (rep, octave_float_matrix);
              MatrixType mtype = rep ? rep -> matrix_type () : MatrixType ();
              FloatDET det = m.determinant (mtype, info, rcond);
              retval(1) = rcond;
              retval(0) = info == -1 ? static_cast<float>(0.0) : det.value ();
              if (rep) rep->matrix_type (mtype);
            }
        }
      else if (arg.is_complex_type ())
        {
          octave_idx_type info;
          float rcond = 0.0;
          // Always compute rcond, so we can detect numerically
          // singular matrices.
          FloatComplexMatrix m = arg.float_complex_matrix_value ();
          if (! error_state)
            {
              MAYBE_CAST (rep, octave_float_complex_matrix);
              MatrixType mtype = rep ? rep -> matrix_type () : MatrixType ();
              FloatComplexDET det = m.determinant (mtype, info, rcond);
              retval(1) = rcond;
              retval(0) = info == -1 ? FloatComplex (0.0) : det.value ();
              if (rep) rep->matrix_type (mtype);
            }
        }
    }
  else
    {
      if (arg.is_real_type ())
        {
          octave_idx_type info;
          double rcond = 0.0;
          // Always compute rcond, so we can detect numerically
          // singular matrices.
          if (arg.is_sparse_type ())
            {
              SparseMatrix m = arg.sparse_matrix_value ();
              if (! error_state)
                {
                  DET det = m.determinant (info, rcond);
                  retval(1) = rcond;
                  retval(0) = info == -1 ? 0.0 : det.value ();
                }
            }
          else
            {
              Matrix m = arg.matrix_value ();
              if (! error_state)
                {
                  MAYBE_CAST (rep, octave_matrix);
                  MatrixType mtype = rep ? rep -> matrix_type ()
                                         : MatrixType ();
                  DET det = m.determinant (mtype, info, rcond);
                  retval(1) = rcond;
                  retval(0) = info == -1 ? 0.0 : det.value ();
                  if (rep) rep->matrix_type (mtype);
                }
            }
        }
      else if (arg.is_complex_type ())
        {
          octave_idx_type info;
          double rcond = 0.0;
          // Always compute rcond, so we can detect numerically
          // singular matrices.
          if (arg.is_sparse_type ())
            {
              SparseComplexMatrix m = arg.sparse_complex_matrix_value ();
              if (! error_state)
                {
                  ComplexDET det = m.determinant (info, rcond);
                  retval(1) = rcond;
                  retval(0) = info == -1 ? Complex (0.0) : det.value ();
                }
            }
          else
            {
              ComplexMatrix m = arg.complex_matrix_value ();
              if (! error_state)
                {
                  MAYBE_CAST (rep, octave_complex_matrix);
                  MatrixType mtype = rep ? rep -> matrix_type () 
                                         : MatrixType ();
                  ComplexDET det = m.determinant (mtype, info, rcond);
                  retval(1) = rcond;
                  retval(0) = info == -1 ? Complex (0.0) : det.value ();
                  if (rep) rep->matrix_type (mtype);
                }
            }
        }
      else
        gripe_wrong_type_arg ("det", arg);
    }
  return retval;
}

/*
%!assert (det ([1, 2; 3, 4]), -2, 10*eps)
%!assert (det (single ([1, 2; 3, 4])), single (-2), 10*eps ("single"))
%!error det ()
%!error det (1, 2)
%!error <argument must be a square matrix> det ([1, 2; 3, 4; 5, 6])
*/