view libinterp/corefcn/eig.cc @ 18961:52e01aa1fe8b

Overhaul FLTK pan, rotate, zoom * graphics.in.h: add axes properties pan, rotate3d, mouse_wheel_zoom and custom set_pan which disables rotate3d. * graphics.cc: add custom set_rotate3d and link with pan property. Disable rotate3d for 2D plots. * __init_fltk__.cc: replace gui_mode and mouse_wheel_zoom with axes properties pan, rotate3d and mouse_wheel_zoom. Disable pan for legends, move them instead. * __add_default_menu__.m: Add new menu entries for new pan and zoom modes. * findall.m: Update test for added uimenus. Each axes now has its own properties for interactive GUI control of pan, rotate3d and mouse_wheel_zoom. Now it's possible to have several figures and set pan for the 2D plot in figure x and rotate3d for the 3D plot in figure y. There are two new pan modes: "Pan x only" and "Pan y only". The toolbar buttons "P" and "R" set pan and rotate3d for the last clicked axes object or the object below the center of the canvas if none was clicked yet. The legend can now be moved with the mouse.
author Andreas Weber <andy.weber.aw@gmail.com>
date Sun, 27 Jul 2014 22:31:14 +0200
parents 6a71e5030df5
children
line wrap: on
line source

/*

Copyright (C) 1996-2013 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "EIG.h"
#include "fEIG.h"

#include "defun.h"
#include "error.h"
#include "gripes.h"
#include "oct-obj.h"
#include "utils.h"

DEFUN (eig, args, nargout,
       "-*- texinfo -*-\n\
@deftypefn  {Built-in Function} {@var{lambda} =} eig (@var{A})\n\
@deftypefnx {Built-in Function} {@var{lambda} =} eig (@var{A}, @var{B})\n\
@deftypefnx {Built-in Function} {[@var{V}, @var{lambda}] =} eig (@var{A})\n\
@deftypefnx {Built-in Function} {[@var{V}, @var{lambda}] =} eig (@var{A}, @var{B})\n\
Compute the eigenvalues (and optionally the eigenvectors) of a matrix\n\
or a pair of matrices\n\
\n\
The algorithm used depends on whether there are one or two input\n\
matrices, if they are real or complex and if they are symmetric\n\
(Hermitian if complex) or non-symmetric.\n\
\n\
The eigenvalues returned by @code{eig} are not ordered.\n\
@seealso{eigs, svd}\n\
@end deftypefn")
{
  octave_value_list retval;

  int nargin = args.length ();

  if (nargin > 2 || nargin == 0 || nargout > 2)
    {
      print_usage ();
      return retval;
    }

  octave_value arg_a, arg_b;

  octave_idx_type nr_a, nr_b, nc_a, nc_b;
  nr_a = nr_b = nc_a = nc_b = 0;

  arg_a = args(0);
  nr_a = arg_a.rows ();
  nc_a = arg_a.columns ();

  int arg_is_empty = empty_arg ("eig", nr_a, nc_a);
  if (arg_is_empty < 0)
    return retval;
  else if (arg_is_empty > 0)
    return octave_value_list (2, Matrix ());

  if (!(arg_a.is_single_type () || arg_a.is_double_type ()))
    {
      gripe_wrong_type_arg ("eig", arg_a);
      return retval;
    }

  if (nargin == 2)
    {
      arg_b = args(1);
      nr_b = arg_b.rows ();
      nc_b = arg_b.columns ();

      arg_is_empty = empty_arg ("eig", nr_b, nc_b);
      if (arg_is_empty < 0)
        return retval;
      else if (arg_is_empty > 0)
        return octave_value_list (2, Matrix ());

      if (!(arg_b.is_single_type () || arg_b.is_double_type ()))
        {
          gripe_wrong_type_arg ("eig", arg_b);
          return retval;
        }
    }

  if (nr_a != nc_a)
    {
      gripe_square_matrix_required ("eig");
      return retval;
    }

  if (nargin == 2 && nr_b != nc_b)
    {
      gripe_square_matrix_required ("eig");
      return retval;
    }

  Matrix tmp_a, tmp_b;
  ComplexMatrix ctmp_a, ctmp_b;
  FloatMatrix ftmp_a, ftmp_b;
  FloatComplexMatrix fctmp_a, fctmp_b;

  if (arg_a.is_single_type ())
    {
      FloatEIG result;

      if (nargin == 1)
        {
          if (arg_a.is_real_type ())
            {
              ftmp_a = arg_a.float_matrix_value ();

              if (error_state)
                return retval;
              else
                result = FloatEIG (ftmp_a, nargout > 1);
            }
          else
            {
              fctmp_a = arg_a.float_complex_matrix_value ();

              if (error_state)
                return retval;
              else
                result = FloatEIG (fctmp_a, nargout > 1);
            }
        }
      else if (nargin == 2)
        {
          if (arg_a.is_real_type () && arg_b.is_real_type ())
            {
              ftmp_a = arg_a.float_matrix_value ();
              ftmp_b = arg_b.float_matrix_value ();

              if (error_state)
                return retval;
              else
                result = FloatEIG (ftmp_a, ftmp_b, nargout > 1);
            }
          else
            {
              fctmp_a = arg_a.float_complex_matrix_value ();
              fctmp_b = arg_b.float_complex_matrix_value ();

              if (error_state)
                return retval;
              else
                result = FloatEIG (fctmp_a, fctmp_b, nargout > 1);
            }
        }

      if (! error_state)
        {
          if (nargout == 0 || nargout == 1)
            {
              retval(0) = result.eigenvalues ();
            }
          else
            {
              // Blame it on Matlab.

              FloatComplexDiagMatrix d (result.eigenvalues ());

              retval(1) = d;
              retval(0) = result.eigenvectors ();
            }
        }
    }
  else
    {
      EIG result;

      if (nargin == 1)
        {
          if (arg_a.is_real_type ())
            {
              tmp_a = arg_a.matrix_value ();

              if (error_state)
                return retval;
              else
                result = EIG (tmp_a, nargout > 1);
            }
          else
            {
              ctmp_a = arg_a.complex_matrix_value ();

              if (error_state)
                return retval;
              else
                result = EIG (ctmp_a, nargout > 1);
            }
        }
      else if (nargin == 2)
        {
          if (arg_a.is_real_type () && arg_b.is_real_type ())
            {
              tmp_a = arg_a.matrix_value ();
              tmp_b = arg_b.matrix_value ();

              if (error_state)
                return retval;
              else
                result = EIG (tmp_a, tmp_b, nargout > 1);
            }
          else
            {
              ctmp_a = arg_a.complex_matrix_value ();
              ctmp_b = arg_b.complex_matrix_value ();

              if (error_state)
                return retval;
              else
                result = EIG (ctmp_a, ctmp_b, nargout > 1);
            }
        }

      if (! error_state)
        {
          if (nargout == 0 || nargout == 1)
            {
              retval(0) = result.eigenvalues ();
            }
          else
            {
              // Blame it on Matlab.

              ComplexDiagMatrix d (result.eigenvalues ());

              retval(1) = d;
              retval(0) = result.eigenvectors ();
            }
        }
    }

  return retval;
}

/*
%!assert (eig ([1, 2; 2, 1]), [-1; 3], sqrt (eps))

%!test
%! [v, d] = eig ([1, 2; 2, 1]);
%! x = 1 / sqrt (2);
%! assert (d, [-1, 0; 0, 3], sqrt (eps));
%! assert (v, [-x, x; x, x], sqrt (eps));

%!assert (eig (single ([1, 2; 2, 1])), single ([-1; 3]), sqrt (eps ("single")))

%!test
%! [v, d] = eig (single ([1, 2; 2, 1]));
%! x = single (1 / sqrt (2));
%! assert (d, single ([-1, 0; 0, 3]), sqrt (eps ("single")));
%! assert (v, [-x, x; x, x], sqrt (eps ("single")));

%!test
%! A = [1, 2; -1, 1];  B = [3, 3; 1, 2];
%! [v, d] = eig (A, B);
%! assert (A * v(:, 1), d(1, 1) * B * v(:, 1), sqrt (eps));
%! assert (A * v(:, 2), d(2, 2) * B * v(:, 2), sqrt (eps));

%!test
%! A = single ([1, 2; -1, 1]);  B = single ([3, 3; 1, 2]);
%! [v, d] = eig (A, B);
%! assert (A * v(:, 1), d(1, 1) * B * v(:, 1), sqrt (eps ("single")));
%! assert (A * v(:, 2), d(2, 2) * B * v(:, 2), sqrt (eps ("single")));

%!test
%! A = [1, 2; 2, 1];  B = [3, -2; -2, 3];
%! [v, d] = eig (A, B);
%! assert (A * v(:, 1), d(1, 1) * B * v(:, 1), sqrt (eps));
%! assert (A * v(:, 2), d(2, 2) * B * v(:, 2), sqrt (eps));

%!test
%! A = single ([1, 2; 2, 1]);  B = single ([3, -2; -2, 3]);
%! [v, d] = eig (A, B);
%! assert (A * v(:, 1), d(1, 1) * B * v(:, 1), sqrt (eps ("single")));
%! assert (A * v(:, 2), d(2, 2) * B * v(:, 2), sqrt (eps ("single")));

%!test
%! A = [1+3i, 2+i; 2-i, 1+3i];  B = [5+9i, 2+i; 2-i, 5+9i];
%! [v, d] = eig (A, B);
%! assert (A * v(:, 1), d(1, 1) * B * v(:, 1), sqrt (eps));
%! assert (A * v(:, 2), d(2, 2) * B * v(:, 2), sqrt (eps));

%!test
%! A = single ([1+3i, 2+i; 2-i, 1+3i]);  B = single ([5+9i, 2+i; 2-i, 5+9i]);
%! [v, d] = eig (A, B);
%! assert (A * v(:, 1), d(1, 1) * B * v(:, 1), sqrt (eps ("single")));
%! assert (A * v(:, 2), d(2, 2) * B * v(:, 2), sqrt (eps ("single")));

%!test
%! A = [1+3i, 2+3i; 3-8i, 8+3i];  B = [8+i, 3+i; 4-9i, 3+i];
%! [v, d] = eig (A, B);
%! assert (A * v(:, 1), d(1, 1) * B * v(:, 1), sqrt (eps));
%! assert (A * v(:, 2), d(2, 2) * B * v(:, 2), sqrt (eps));

%!test
%! A = single ([1+3i, 2+3i; 3-8i, 8+3i]);  B = single ([8+i, 3+i; 4-9i, 3+i]);
%! [v, d] = eig (A, B);
%! assert (A * v(:, 1), d(1, 1) * B * v(:, 1), sqrt (eps ("single")));
%! assert (A * v(:, 2), d(2, 2) * B * v(:, 2), sqrt (eps ("single")));

%!test
%! A = [1, 2; 3, 8];  B = [8, 3; 4, 3];
%! [v, d] = eig (A, B);
%! assert (A * v(:, 1), d(1, 1) * B * v(:, 1), sqrt (eps));
%! assert (A * v(:, 2), d(2, 2) * B * v(:, 2), sqrt (eps));

%!error eig ()
%!error eig ([1, 2; 3, 4], [4, 3; 2, 1], 1)
%!error <EIG requires same size matrices> eig ([1, 2; 3, 4], 2)
%!error <argument must be a square matrix> eig ([1, 2; 3, 4; 5, 6])
%!error <wrong type argument> eig ("abcd")
%!error <wrong type argument> eig ([1 2 ; 2 3], "abcd")
%!error <wrong type argument> eig (false, [1 2 ; 2 3])
*/