view libinterp/corefcn/fft2.cc @ 18961:52e01aa1fe8b

Overhaul FLTK pan, rotate, zoom * graphics.in.h: add axes properties pan, rotate3d, mouse_wheel_zoom and custom set_pan which disables rotate3d. * graphics.cc: add custom set_rotate3d and link with pan property. Disable rotate3d for 2D plots. * __init_fltk__.cc: replace gui_mode and mouse_wheel_zoom with axes properties pan, rotate3d and mouse_wheel_zoom. Disable pan for legends, move them instead. * __add_default_menu__.m: Add new menu entries for new pan and zoom modes. * findall.m: Update test for added uimenus. Each axes now has its own properties for interactive GUI control of pan, rotate3d and mouse_wheel_zoom. Now it's possible to have several figures and set pan for the 2D plot in figure x and rotate3d for the 3D plot in figure y. There are two new pan modes: "Pan x only" and "Pan y only". The toolbar buttons "P" and "R" set pan and rotate3d for the last clicked axes object or the object below the center of the canvas if none was clicked yet. The legend can now be moved with the mouse.
author Andreas Weber <andy.weber.aw@gmail.com>
date Sun, 27 Jul 2014 22:31:14 +0200
parents 175b392e91fe
children
line wrap: on
line source

/*

Copyright (C) 1997-2013 David Bateman
Copyright (C) 1996-1997 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "lo-mappers.h"

#include "defun.h"
#include "error.h"
#include "gripes.h"
#include "oct-obj.h"
#include "utils.h"

// This function should be merged with Fifft.

#if defined (HAVE_FFTW)
#define FFTSRC "@sc{fftw}"
#else
#define FFTSRC "@sc{fftpack}"
#endif

static octave_value
do_fft2 (const octave_value_list &args, const char *fcn, int type)
{
  octave_value retval;

  int nargin = args.length ();

  if (nargin < 1 || nargin > 3)
    {
      print_usage ();
      return retval;
    }

  octave_value arg = args(0);
  dim_vector dims = arg.dims ();
  octave_idx_type n_rows = -1;

  if (nargin > 1)
    {
      double dval = args(1).double_value ();
      if (xisnan (dval))
        error ("%s: number of rows (N) cannot be NaN", fcn);
      else
        {
          n_rows = NINTbig (dval);
          if (n_rows < 0)
            error ("%s: number of rows (N) must be greater than zero", fcn);
        }
    }

  if (error_state)
    return retval;

  octave_idx_type n_cols = -1;
  if (nargin > 2)
    {
      double dval = args(2).double_value ();
      if (xisnan (dval))
        error ("%s: number of columns (M) cannot be NaN", fcn);
      else
        {
          n_cols = NINTbig (dval);
          if (n_cols < 0)
            error ("%s: number of columns (M) must be greater than zero", fcn);
        }
    }

  if (error_state)
    return retval;

  for (int i = 0; i < dims.length (); i++)
    if (dims(i) < 0)
      return retval;

  if (n_rows < 0)
    n_rows = dims (0);
  else
    dims (0) = n_rows;

  if (n_cols < 0)
    n_cols = dims (1);
  else
    dims (1) = n_cols;

  if (dims.all_zero () || n_rows == 0 || n_cols == 0)
    {
      if (arg.is_single_type ())
        return octave_value (FloatMatrix ());
      else
        return octave_value (Matrix ());
    }

  if (arg.is_single_type ())
    {
      if (arg.is_real_type ())
        {
          FloatNDArray nda = arg.float_array_value ();

          if (! error_state)
            {
              nda.resize (dims, 0.0);
              retval = (type != 0 ? nda.ifourier2d () : nda.fourier2d ());
            }
        }
      else
        {
          FloatComplexNDArray cnda = arg.float_complex_array_value ();

          if (! error_state)
            {
              cnda.resize (dims, 0.0);
              retval = (type != 0 ? cnda.ifourier2d () : cnda.fourier2d ());
            }
        }
    }
  else
    {
      if (arg.is_real_type ())
        {
          NDArray nda = arg.array_value ();

          if (! error_state)
            {
              nda.resize (dims, 0.0);
              retval = (type != 0 ? nda.ifourier2d () : nda.fourier2d ());
            }
        }
      else if (arg.is_complex_type ())
        {
          ComplexNDArray cnda = arg.complex_array_value ();

          if (! error_state)
            {
              cnda.resize (dims, 0.0);
              retval = (type != 0 ? cnda.ifourier2d () : cnda.fourier2d ());
            }
        }
      else
        {
          gripe_wrong_type_arg (fcn, arg);
        }
    }

  return retval;
}

DEFUN (fft2, args, ,
       "-*- texinfo -*-\n\
@deftypefn  {Built-in Function} {} fft2 (@var{A})\n\
@deftypefnx {Built-in Function} {} fft2 (@var{A}, @var{m}, @var{n})\n\
Compute the two-dimensional discrete Fourier transform of @var{A} using\n\
a Fast Fourier Transform (FFT) algorithm.\n\
\n\
The optional arguments @var{m} and @var{n} may be used specify the\n\
number of rows and columns of @var{A} to use.  If either of these is\n\
larger than the size of @var{A}, @var{A} is resized and padded with\n\
zeros.\n\
\n\
If @var{A} is a multi-dimensional matrix, each two-dimensional sub-matrix\n\
of @var{A} is treated separately.\n\
@seealso {ifft2, fft, fftn, fftw}\n\
@end deftypefn")
{
  return do_fft2 (args, "fft2", 0);
}


DEFUN (ifft2, args, ,
       "-*- texinfo -*-\n\
@deftypefn  {Built-in Function} {} ifft2 (@var{A})\n\
@deftypefnx {Built-in Function} {} ifft2 (@var{A}, @var{m}, @var{n})\n\
Compute the inverse two-dimensional discrete Fourier transform of @var{A}\n\
using a Fast Fourier Transform (FFT) algorithm.\n\
\n\
The optional arguments @var{m} and @var{n} may be used specify the\n\
number of rows and columns of @var{A} to use.  If either of these is\n\
larger than the size of @var{A}, @var{A} is resized and padded with\n\
zeros.\n\
\n\
If @var{A} is a multi-dimensional matrix, each two-dimensional sub-matrix\n\
of @var{A} is treated separately\n\
@seealso {fft2, ifft, ifftn, fftw}\n\
@end deftypefn")
{
  return do_fft2 (args, "ifft2", 1);
}

/*
%% Author: David Billinghurst (David.Billinghurst@riotinto.com.au)
%%         Comalco Research and Technology
%%         02 May 2000
%!test
%! M = 16;
%! N = 8;
%!
%! m = 5;
%! n = 3;
%!
%! x = 2*pi*(0:1:M-1)/M;
%! y = 2*pi*(0:1:N-1)/N;
%! sx = cos (m*x);
%! sy = sin (n*y);
%! s = kron (sx',sy);
%! S = fft2 (s);
%! answer = kron (fft (sx)', fft (sy));
%! assert (S, answer, 4*M*N*eps);

%% Author: David Billinghurst (David.Billinghurst@riotinto.com.au)
%%         Comalco Research and Technology
%%         02 May 2000
%!test
%! M = 12;
%! N = 7;
%!
%! m = 3;
%! n = 2;
%!
%! x = 2*pi*(0:1:M-1)/M;
%! y = 2*pi*(0:1:N-1)/N;
%!
%! sx = cos (m*x);
%! sy = cos (n*y);
%!
%! S = kron (fft (sx)', fft (sy));
%! answer = kron (sx', sy);
%! s = ifft2 (S);
%!
%! assert (s, answer, 30*eps);


%% Author: David Billinghurst (David.Billinghurst@riotinto.com.au)
%%         Comalco Research and Technology
%%         02 May 2000
%!test
%! M = 16;
%! N = 8;
%!
%! m = 5;
%! n = 3;
%!
%! x = 2*pi*(0:1:M-1)/M;
%! y = 2*pi*(0:1:N-1)/N;
%! sx = single (cos (m*x));
%! sy = single (sin (n*y));
%! s = kron (sx', sy);
%! S = fft2 (s);
%! answer = kron (fft (sx)', fft (sy));
%! assert (S, answer, 4*M*N*eps ("single"));

%% Author: David Billinghurst (David.Billinghurst@riotinto.com.au)
%%         Comalco Research and Technology
%%         02 May 2000
%!test
%! M = 12;
%! N = 7;
%!
%! m = 3;
%! n = 2;
%!
%! x = single (2*pi*(0:1:M-1)/M);
%! y = single (2*pi*(0:1:N-1)/N);
%!
%! sx = cos (m*x);
%! sy = cos (n*y);
%!
%! S = kron (fft (sx)', fft (sy));
%! answer = kron (sx', sy);
%! s = ifft2 (S);
%!
%! assert (s, answer, 30*eps ("single"));
*/