view libinterp/corefcn/sparse-xpow.cc @ 18961:52e01aa1fe8b

Overhaul FLTK pan, rotate, zoom * graphics.in.h: add axes properties pan, rotate3d, mouse_wheel_zoom and custom set_pan which disables rotate3d. * graphics.cc: add custom set_rotate3d and link with pan property. Disable rotate3d for 2D plots. * __init_fltk__.cc: replace gui_mode and mouse_wheel_zoom with axes properties pan, rotate3d and mouse_wheel_zoom. Disable pan for legends, move them instead. * __add_default_menu__.m: Add new menu entries for new pan and zoom modes. * findall.m: Update test for added uimenus. Each axes now has its own properties for interactive GUI control of pan, rotate3d and mouse_wheel_zoom. Now it's possible to have several figures and set pan for the 2D plot in figure x and rotate3d for the 3D plot in figure y. There are two new pan modes: "Pan x only" and "Pan y only". The toolbar buttons "P" and "R" set pan and rotate3d for the last clicked axes object or the object below the center of the canvas if none was clicked yet. The legend can now be moved with the mouse.
author Andreas Weber <andy.weber.aw@gmail.com>
date Sun, 27 Jul 2014 22:31:14 +0200
parents 870f3e12e163
children
line wrap: on
line source

/*

Copyright (C) 2004-2013 David Bateman
Copyright (C) 1998-2004 Andy Adler

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <cassert>

#include <limits>

#include "Array-util.h"
#include "oct-cmplx.h"
#include "quit.h"

#include "error.h"
#include "oct-obj.h"
#include "utils.h"

#include "dSparse.h"
#include "CSparse.h"
#include "ov-re-sparse.h"
#include "ov-cx-sparse.h"
#include "sparse-xpow.h"

static inline int
xisint (double x)
{
  return (D_NINT (x) == x
          && ((x >= 0 && x < std::numeric_limits<int>::max ())
              || (x <= 0 && x > std::numeric_limits<int>::min ())));
}


// Safer pow functions. Only two make sense for sparse matrices, the
// others should all promote to full matrices.

octave_value
xpow (const SparseMatrix& a, double b)
{
  octave_value retval;

  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.cols ();

  if (nr == 0 || nc == 0 || nr != nc)
    error ("for A^b, A must be a square matrix. Use .^ for elementwise power.");
  else
    {
      if (static_cast<int> (b) == b)
        {
          int btmp = static_cast<int> (b);
          if (btmp == 0)
            {
              SparseMatrix tmp = SparseMatrix (nr, nr, nr);
              for (octave_idx_type i = 0; i < nr; i++)
                {
                  tmp.data (i) = 1.0;
                  tmp.ridx (i) = i;
                }
              for (octave_idx_type i = 0; i < nr + 1; i++)
                tmp.cidx (i) = i;

              retval = tmp;
            }
          else
            {
              SparseMatrix atmp;
              if (btmp < 0)
                {
                  btmp = -btmp;

                  octave_idx_type info;
                  double rcond = 0.0;
                  MatrixType mattyp (a);

                  atmp = a.inverse (mattyp, info, rcond, 1);

                  if (info == -1)
                    warning ("inverse: matrix singular to machine\
 precision, rcond = %g", rcond);
                }
              else
                atmp = a;

              SparseMatrix result (atmp);

              btmp--;

              while (btmp > 0)
                {
                  if (btmp & 1)
                    result = result * atmp;

                  btmp >>= 1;

                  if (btmp > 0)
                    atmp = atmp * atmp;
                }

              retval = result;
            }
        }
      else
        error ("use full(a) ^ full(b)");
    }

  return retval;
}

octave_value
xpow (const SparseComplexMatrix& a, double b)
{
  octave_value retval;

  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.cols ();

  if (nr == 0 || nc == 0 || nr != nc)
    error ("for A^b, A must be a square matrix. Use .^ for elementwise power.");
  else
    {
      if (static_cast<int> (b) == b)
        {
          int btmp = static_cast<int> (b);
          if (btmp == 0)
            {
              SparseMatrix tmp = SparseMatrix (nr, nr, nr);
              for (octave_idx_type i = 0; i < nr; i++)
                {
                  tmp.data (i) = 1.0;
                  tmp.ridx (i) = i;
                }
              for (octave_idx_type i = 0; i < nr + 1; i++)
                tmp.cidx (i) = i;

              retval = tmp;
            }
          else
            {
              SparseComplexMatrix atmp;
              if (btmp < 0)
                {
                  btmp = -btmp;

                  octave_idx_type info;
                  double rcond = 0.0;
                  MatrixType mattyp (a);

                  atmp = a.inverse (mattyp, info, rcond, 1);

                  if (info == -1)
                    warning ("inverse: matrix singular to machine\
 precision, rcond = %g", rcond);
                }
              else
                atmp = a;

              SparseComplexMatrix result (atmp);

              btmp--;

              while (btmp > 0)
                {
                  if (btmp & 1)
                    result = result * atmp;

                  btmp >>= 1;

                  if (btmp > 0)
                    atmp = atmp * atmp;
                }

              retval = result;
            }
        }
      else
        error ("use full(a) ^ full(b)");
    }

  return retval;
}

// Safer pow functions that work elementwise for matrices.
//
//       op2 \ op1:   s   m   cs   cm
//            +--   +---+---+----+----+
//   scalar   |     | * | 3 |  * |  9 |
//                  +---+---+----+----+
//   matrix         | 1 | 4 |  7 | 10 |
//                  +---+---+----+----+
//   complex_scalar | * | 5 |  * | 11 |
//                  +---+---+----+----+
//   complex_matrix | 2 | 6 |  8 | 12 |
//                  +---+---+----+----+
//
//   * -> not needed.

// FIXME: these functions need to be fixed so that things
// like
//
//   a = -1; b = [ 0, 0.5, 1 ]; r = a .^ b
//
// and
//
//   a = -1; b = [ 0, 0.5, 1 ]; for i = 1:3, r(i) = a .^ b(i), end
//
// produce identical results.  Also, it would be nice if -1^0.5
// produced a pure imaginary result instead of a complex number with a
// small real part.  But perhaps that's really a problem with the math
// library...

// Handle special case of scalar-sparse-matrix .^ sparse-matrix.
// Forwarding to the scalar elem_xpow function and then converting the
// result back to a sparse matrix is a bit wasteful but it does not
// seem worth the effort to optimize -- how often does this case come up
// in practice?

template <class S, class SM>
inline octave_value
scalar_xpow (const S& a, const SM& b)
{
  octave_value val = elem_xpow (a, b);

  if (val.is_complex_type ())
    return SparseComplexMatrix (val.complex_matrix_value ());
  else
    return SparseMatrix (val.matrix_value ());
}

/*
%!assert (sparse (2) .^ [3, 4], sparse ([8, 16]));
%!assert (sparse (2i) .^ [3, 4], sparse ([-0-8i, 16]));
*/

// -*- 1 -*-
octave_value
elem_xpow (double a, const SparseMatrix& b)
{
  octave_value retval;

  octave_idx_type nr = b.rows ();
  octave_idx_type nc = b.cols ();

  double d1, d2;

  if (a < 0.0 && ! b.all_integers (d1, d2))
    {
      Complex atmp (a);
      ComplexMatrix result (nr, nc);

      for (octave_idx_type j = 0; j < nc; j++)
        {
          for (octave_idx_type i = 0; i < nr; i++)
            {
              octave_quit ();
              result(i, j) = std::pow (atmp, b(i,j));
            }
        }

      retval = result;
    }
  else
    {
      Matrix result (nr, nc);

      for (octave_idx_type j = 0; j < nc; j++)
        {
          for (octave_idx_type i = 0; i < nr; i++)
            {
              octave_quit ();
              result(i, j) = std::pow (a, b(i,j));
            }
        }

      retval = result;
    }

  return retval;
}

// -*- 2 -*-
octave_value
elem_xpow (double a, const SparseComplexMatrix& b)
{
  octave_idx_type nr = b.rows ();
  octave_idx_type nc = b.cols ();

  Complex atmp (a);
  ComplexMatrix result (nr, nc);

  for (octave_idx_type j = 0; j < nc; j++)
    {
      for (octave_idx_type i = 0; i < nr; i++)
        {
          octave_quit ();
          result(i, j) = std::pow (atmp, b(i,j));
        }
    }

  return result;
}

// -*- 3 -*-
octave_value
elem_xpow (const SparseMatrix& a, double b)
{
  // FIXME: What should a .^ 0 give?  Matlab gives a
  // sparse matrix with same structure as a, which is strictly
  // incorrect. Keep compatibility.

  octave_value retval;

  octave_idx_type nz = a.nnz ();

  if (b <= 0.0)
    {
      octave_idx_type nr = a.rows ();
      octave_idx_type nc = a.cols ();

      if (static_cast<int> (b) != b && a.any_element_is_negative ())
        {
          ComplexMatrix result (nr, nc, Complex (std::pow (0.0, b)));

          // FIXME: avoid apparent GNU libm bug by
          // converting A and B to complex instead of just A.
          Complex btmp (b);

          for (octave_idx_type j = 0; j < nc; j++)
            for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
              {
                octave_quit ();

                Complex atmp (a.data (i));

                result(a.ridx (i), j) = std::pow (atmp, btmp);
              }

          retval = octave_value (result);
        }
      else
        {
          Matrix result (nr, nc, (std::pow (0.0, b)));

          for (octave_idx_type j = 0; j < nc; j++)
            for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
              {
                octave_quit ();
                result(a.ridx (i), j) = std::pow (a.data (i), b);
              }

          retval = octave_value (result);
        }
    }
  else if (static_cast<int> (b) != b && a.any_element_is_negative ())
    {
      SparseComplexMatrix result (a);

      for (octave_idx_type i = 0; i < nz; i++)
        {
          octave_quit ();

          // FIXME: avoid apparent GNU libm bug by
          // converting A and B to complex instead of just A.

          Complex atmp (a.data (i));
          Complex btmp (b);

          result.data (i) = std::pow (atmp, btmp);
        }

      result.maybe_compress (true);

      retval = result;
    }
  else
    {
      SparseMatrix result (a);

      for (octave_idx_type i = 0; i < nz; i++)
        {
          octave_quit ();
          result.data (i) = std::pow (a.data (i), b);
        }

      result.maybe_compress (true);

      retval = result;
    }

  return retval;
}

// -*- 4 -*-
octave_value
elem_xpow (const SparseMatrix& a, const SparseMatrix& b)
{
  octave_value retval;

  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.cols ();

  octave_idx_type b_nr = b.rows ();
  octave_idx_type b_nc = b.cols ();

  if (a.numel () == 1 && b.numel () > 1)
    return scalar_xpow (a(0), b);

  if (nr != b_nr || nc != b_nc)
    {
      gripe_nonconformant ("operator .^", nr, nc, b_nr, b_nc);
      return octave_value ();
    }

  int convert_to_complex = 0;
  for (octave_idx_type j = 0; j < nc; j++)
    for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
      {
        if (a.data(i) < 0.0)
          {
            double btmp = b (a.ridx (i), j);
            if (static_cast<int> (btmp) != btmp)
              {
                convert_to_complex = 1;
                goto done;
              }
          }
      }

done:

  // This is a dumb operator for sparse matrices anyway, and there is
  // no sensible way to handle the 0.^0 versus the 0.^x cases. Therefore
  // allocate a full matrix filled for the 0.^0 case and shrink it later
  // as needed

  if (convert_to_complex)
    {
      SparseComplexMatrix complex_result (nr, nc, Complex (1.0, 0.0));

      for (octave_idx_type j = 0; j < nc; j++)
        {
          for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
            {
              octave_quit ();
              complex_result.xelem (a.ridx (i), j) =
                std::pow (Complex (a.data (i)), Complex (b(a.ridx (i), j)));
            }
        }
      complex_result.maybe_compress (true);
      retval = complex_result;
    }
  else
    {
      SparseMatrix result (nr, nc, 1.0);

      for (octave_idx_type j = 0; j < nc; j++)
        {
          for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
            {
              octave_quit ();
              result.xelem (a.ridx (i), j) = std::pow (a.data (i),
                                                       b(a.ridx (i), j));
            }
        }
      result.maybe_compress (true);
      retval = result;
    }

  return retval;
}

// -*- 5 -*-
octave_value
elem_xpow (const SparseMatrix& a, const Complex& b)
{
  octave_value retval;

  if (b == 0.0)
    // Can this case ever happen, due to automatic retyping with maybe_mutate?
    retval = octave_value (NDArray (a.dims (), 1));
  else
    {
      octave_idx_type nz = a.nnz ();
      SparseComplexMatrix result (a);

      for (octave_idx_type i = 0; i < nz; i++)
        {
          octave_quit ();
          result.data (i) = std::pow (Complex (a.data (i)), b);
        }

      result.maybe_compress (true);

      retval = result;
    }

  return retval;
}

// -*- 6 -*-
octave_value
elem_xpow (const SparseMatrix& a, const SparseComplexMatrix& b)
{
  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.cols ();

  octave_idx_type b_nr = b.rows ();
  octave_idx_type b_nc = b.cols ();

  if (a.numel () == 1 && b.numel () > 1)
    return scalar_xpow (a(0), b);

  if (nr != b_nr || nc != b_nc)
    {
      gripe_nonconformant ("operator .^", nr, nc, b_nr, b_nc);
      return octave_value ();
    }

  SparseComplexMatrix result (nr, nc, Complex (1.0, 0.0));
  for (octave_idx_type j = 0; j < nc; j++)
    {
      for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
        {
          octave_quit ();
          result.xelem (a.ridx(i), j) = std::pow (a.data (i), b(a.ridx (i), j));
        }
    }

  result.maybe_compress (true);

  return result;
}

// -*- 7 -*-
octave_value
elem_xpow (const Complex& a, const SparseMatrix& b)
{
  octave_idx_type nr = b.rows ();
  octave_idx_type nc = b.cols ();

  ComplexMatrix result (nr, nc);

  for (octave_idx_type j = 0; j < nc; j++)
    {
      for (octave_idx_type i = 0; i < nr; i++)
        {
          octave_quit ();
          double btmp = b (i, j);
          if (xisint (btmp))
            result (i, j) = std::pow (a, static_cast<int> (btmp));
          else
            result (i, j) = std::pow (a, btmp);
        }
    }

  return result;
}

// -*- 8 -*-
octave_value
elem_xpow (const Complex& a, const SparseComplexMatrix& b)
{
  octave_idx_type nr = b.rows ();
  octave_idx_type nc = b.cols ();

  ComplexMatrix result (nr, nc);
  for (octave_idx_type j = 0; j < nc; j++)
    for (octave_idx_type i = 0; i < nr; i++)
      {
        octave_quit ();
        result (i, j) = std::pow (a, b (i, j));
      }

  return result;
}

// -*- 9 -*-
octave_value
elem_xpow (const SparseComplexMatrix& a, double b)
{
  octave_value retval;

  if (b <= 0)
    {
      octave_idx_type nr = a.rows ();
      octave_idx_type nc = a.cols ();

      ComplexMatrix result (nr, nc, Complex (std::pow (0.0, b)));

      if (xisint (b))
        {
          for (octave_idx_type j = 0; j < nc; j++)
            for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
              {
                octave_quit ();
                result (a.ridx (i), j) =
                  std::pow (a.data (i), static_cast<int> (b));
              }
        }
      else
        {
          for (octave_idx_type j = 0; j < nc; j++)
            for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
              {
                octave_quit ();
                result (a.ridx (i), j) = std::pow (a.data (i), b);
              }
        }

      retval = result;
    }
  else
    {
      octave_idx_type nz = a.nnz ();

      SparseComplexMatrix result (a);

      if (xisint (b))
        {
          for (octave_idx_type i = 0; i < nz; i++)
            {
              octave_quit ();
              result.data (i) = std::pow (a.data (i), static_cast<int> (b));
            }
        }
      else
        {
          for (octave_idx_type i = 0; i < nz; i++)
            {
              octave_quit ();
              result.data (i) = std::pow (a.data (i), b);
            }
        }

      result.maybe_compress (true);

      retval = result;
    }

  return retval;
}

// -*- 10 -*-
octave_value
elem_xpow (const SparseComplexMatrix& a, const SparseMatrix& b)
{
  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.cols ();

  octave_idx_type b_nr = b.rows ();
  octave_idx_type b_nc = b.cols ();

  if (a.numel () == 1 && b.numel () > 1)
    return scalar_xpow (a(0), b);

  if (nr != b_nr || nc != b_nc)
    {
      gripe_nonconformant ("operator .^", nr, nc, b_nr, b_nc);
      return octave_value ();
    }

  SparseComplexMatrix result (nr, nc, Complex (1.0, 0.0));
  for (octave_idx_type j = 0; j < nc; j++)
    {
      for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
        {
          octave_quit ();
          double btmp = b(a.ridx (i), j);
          Complex tmp;

          if (xisint (btmp))
            result.xelem (a.ridx (i), j) = std::pow (a.data (i),
                                              static_cast<int> (btmp));
          else
            result.xelem (a.ridx (i), j) = std::pow (a.data (i), btmp);
        }
    }

  result.maybe_compress (true);

  return result;
}

// -*- 11 -*-
octave_value
elem_xpow (const SparseComplexMatrix& a, const Complex& b)
{
  octave_value retval;

  if (b == 0.0)
    // Can this case ever happen, due to automatic retyping with maybe_mutate?
    retval = octave_value (NDArray (a.dims (), 1));
  else
    {

      octave_idx_type nz = a.nnz ();

      SparseComplexMatrix result (a);

      for (octave_idx_type i = 0; i < nz; i++)
        {
          octave_quit ();
          result.data (i) = std::pow (a.data (i), b);
        }

      result.maybe_compress (true);

      retval = result;
    }

  return retval;
}

// -*- 12 -*-
octave_value
elem_xpow (const SparseComplexMatrix& a, const SparseComplexMatrix& b)
{
  octave_idx_type nr = a.rows ();
  octave_idx_type nc = a.cols ();

  octave_idx_type b_nr = b.rows ();
  octave_idx_type b_nc = b.cols ();

  if (a.numel () == 1 && b.numel () > 1)
    return scalar_xpow (a(0), b);

  if (nr != b_nr || nc != b_nc)
    {
      gripe_nonconformant ("operator .^", nr, nc, b_nr, b_nc);
      return octave_value ();
    }

  SparseComplexMatrix result (nr, nc, Complex (1.0, 0.0));
  for (octave_idx_type j = 0; j < nc; j++)
    {
      for (octave_idx_type i = a.cidx (j); i < a.cidx (j+1); i++)
        {
          octave_quit ();
          result.xelem (a.ridx (i), j) = std::pow (a.data (i),
                                                   b(a.ridx (i), j));
        }
    }
  result.maybe_compress (true);

  return result;
}