view liboctave/Sparse.h @ 8920:eb63fbe60fab

update copyright notices
author John W. Eaton <jwe@octave.org>
date Sat, 07 Mar 2009 10:41:27 -0500
parents f5408862892f
children d865363208d6
line wrap: on
line source

// Template sparse classes
/*

Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009 David Bateman
Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004 Andy Adler

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if !defined (octave_Sparse_h)
#define octave_Sparse_h 1

#include <cassert>
#include <cstddef>

#include <iostream>

#include "Array.h"
#include "Array2.h"
#include "dim-vector.h"
#include "lo-utils.h"

#include "oct-sort.h"

class idx_vector;

// Two dimensional sparse class.  Handles the reference counting for
// all the derived classes.

template <class T>
class
Sparse
{
public:

  typedef T element_type;

protected:
  //--------------------------------------------------------------------
  // The real representation of all Sparse arrays.
  //--------------------------------------------------------------------

  class OCTAVE_API SparseRep
  {
  public:

    T *d;
    octave_idx_type *r;
    octave_idx_type *c;
    octave_idx_type nzmx;
    octave_idx_type nrows;
    octave_idx_type ncols;
    int count;

    SparseRep (void) : d (0), r (0), c (new octave_idx_type [1]), nzmx (0), nrows (0),
		       ncols (0), count (1) { c[0] = 0; }

    SparseRep (octave_idx_type n) : d (0), r (0), c (new octave_idx_type [n+1]), nzmx (0), nrows (n),
      ncols (n), count (1)
      { 
	for (octave_idx_type i = 0; i < n + 1; i++)
	  c[i] = 0;
      }

    SparseRep (octave_idx_type nr, octave_idx_type nc) : d (0), r (0), c (new octave_idx_type [nc+1]), nzmx (0), 
      nrows (nr), ncols (nc), count (1)
      { 
	for (octave_idx_type i = 0; i < nc + 1; i++)
	  c[i] = 0;
      }

    SparseRep (octave_idx_type nr, octave_idx_type nc, octave_idx_type nz) : d (new T [nz]), 
      r (new octave_idx_type [nz]), c (new octave_idx_type [nc+1]), nzmx (nz), nrows (nr), 
      ncols (nc), count (1)
      { 
	for (octave_idx_type i = 0; i < nc + 1; i++)
	  c[i] = 0;
      }

    SparseRep (const SparseRep& a)
      : d (new T [a.nzmx]), r (new octave_idx_type [a.nzmx]), c (new octave_idx_type [a.ncols + 1]), 
      nzmx (a.nzmx), nrows (a.nrows), ncols (a.ncols), count (1)
      {
	for (octave_idx_type i = 0; i < nzmx; i++)
	  {
	    d[i] = a.d[i];
	    r[i] = a.r[i];
	  }
	for (octave_idx_type i = 0; i < ncols + 1; i++)
	  c[i] = a.c[i];
      }
 
    ~SparseRep (void) { delete [] d; delete [] r; delete [] c; }

    octave_idx_type length (void) const { return nzmx; }

    octave_idx_type nnz (void) const { return c [ncols]; }

    T& elem (octave_idx_type _r, octave_idx_type _c);

    T celem (octave_idx_type _r, octave_idx_type _c) const;

    T& data (octave_idx_type i) { return d[i]; }

    T cdata (octave_idx_type i) const { return d[i]; }

    octave_idx_type& ridx (octave_idx_type i) { return r[i]; }

    octave_idx_type cridx (octave_idx_type i) const { return r[i]; }

    octave_idx_type& cidx (octave_idx_type i) { return c[i]; }

    octave_idx_type ccidx (octave_idx_type i) const { return c[i]; }

    void maybe_compress (bool remove_zeros);

    void change_length (octave_idx_type nz);

  private:

    // No assignment!

    SparseRep& operator = (const SparseRep& a);
  };

  //--------------------------------------------------------------------

  void make_unique (void)
    {
      if (rep->count > 1)
	{
	  --rep->count;
	  rep = new SparseRep (*rep);
	}
    }

public:

  // !!! WARNING !!! -- these should be protected, not public.  You
  // should not access these data members directly!

  typename Sparse<T>::SparseRep *rep;

  dim_vector dimensions;

protected:
  idx_vector *idx;
  octave_idx_type idx_count;

private:

  typename Sparse<T>::SparseRep *nil_rep (void) const
    {
      static typename Sparse<T>::SparseRep *nr
	= new typename Sparse<T>::SparseRep ();

      nr->count++;

      return nr;
    }

public:

  Sparse (void)
    : rep (nil_rep ()), dimensions (dim_vector(0,0)),
      idx (0), idx_count (0) { }

  explicit Sparse (octave_idx_type n)
    : rep (new typename Sparse<T>::SparseRep (n)), 
      dimensions (dim_vector (n, n)), idx (0), idx_count (0) { }

  explicit Sparse (octave_idx_type nr, octave_idx_type nc)
    : rep (new typename Sparse<T>::SparseRep (nr, nc)), 
      dimensions (dim_vector (nr, nc)), idx (0), idx_count (0) { }

  explicit Sparse (octave_idx_type nr, octave_idx_type nc, T val);

  Sparse (const dim_vector& dv, octave_idx_type nz)
    : rep (new typename Sparse<T>::SparseRep (dv(0), dv(1), nz)),
    dimensions (dv), idx (0), idx_count (0) { }

  Sparse (octave_idx_type nr, octave_idx_type nc, octave_idx_type nz)
    : rep (new typename Sparse<T>::SparseRep (nr, nc, nz)),
      dimensions (dim_vector (nr, nc)), idx (0), idx_count (0) { }

  // Type conversion case.
  template <class U> Sparse (const Sparse<U>& a);

  // No type conversion case.
  Sparse (const Sparse<T>& a)
    : rep (a.rep), dimensions (a.dimensions), idx (0), idx_count (0)
    {
      rep->count++;
    }

public:

  Sparse (const dim_vector& dv);

  Sparse (const Sparse<T>& a, const dim_vector& dv);

  Sparse (const Array<T>& a, const Array<octave_idx_type>& r, const Array<octave_idx_type>& c,
	  octave_idx_type nr, octave_idx_type nc, bool sum_terms);

  Sparse (const Array<T>& a, const Array<double>& r, const Array<double>& c,
	  octave_idx_type nr, octave_idx_type nc, bool sum_terms);

  // Sparsify a normal matrix
  Sparse (const Array2<T>& a);
  Sparse (const Array<T>& a);

  virtual ~Sparse (void);

  Sparse<T>& operator = (const Sparse<T>& a);

  // Note that nzmax and capacity are the amount of storage for
  // non-zero elements, while nnz is the actual number of non-zero
  // terms.
  octave_idx_type nzmax (void) const { return rep->length (); }
  octave_idx_type capacity (void) const { return nzmax (); }
  octave_idx_type nnz (void) const { return rep->nnz (); }

  // Paranoid number of elements test for case of dims = (-1,-1)
  octave_idx_type numel (void) const 
    { 
      if (dim1() < 0 || dim2() < 0)
        return 0;
      else
        return dimensions.numel (); 
    }

  octave_idx_type nelem (void) const { return capacity (); }
  octave_idx_type length (void) const { return numel (); }

  octave_idx_type dim1 (void) const { return dimensions(0); }
  octave_idx_type dim2 (void) const { return dimensions(1); }

  octave_idx_type rows (void) const { return dim1 (); }
  octave_idx_type cols (void) const { return dim2 (); }
  octave_idx_type columns (void) const { return dim2 (); }

  octave_idx_type get_row_index (octave_idx_type k) { return ridx (k); }
  octave_idx_type get_col_index (octave_idx_type k)
    {
      octave_idx_type ret = 0;
      while (cidx(ret+1) < k)
        ret++;
      return ret;
    }
  size_t byte_size (void) const { return (cols () + 1) * sizeof (octave_idx_type) +
      capacity () * (sizeof (T) + sizeof (octave_idx_type)); }

  dim_vector dims (void) const { return dimensions; }

  Sparse<T> squeeze (void) const { return *this; }
  
  octave_idx_type compute_index (const Array<octave_idx_type>& ra_idx) const;

  T range_error (const char *fcn, octave_idx_type n) const;
  T& range_error (const char *fcn, octave_idx_type n);

  T range_error (const char *fcn, octave_idx_type i, octave_idx_type j) const;
  T& range_error (const char *fcn, octave_idx_type i, octave_idx_type j);

  T range_error (const char *fcn, const Array<octave_idx_type>& ra_idx) const;
  T& range_error (const char *fcn, const Array<octave_idx_type>& ra_idx);

  // No checking, even for multiple references, ever.

  T& xelem (octave_idx_type n) 
    { 
      octave_idx_type i = n % rows (), j = n / rows(); 
      return xelem (i, j); 
    }

  T xelem (octave_idx_type n) const 
    { 
      octave_idx_type i = n % rows (), j = n / rows(); 
      return xelem (i, j); 
    }
  
  T& xelem (octave_idx_type i, octave_idx_type j) { return rep->elem (i, j); }
  T xelem (octave_idx_type i, octave_idx_type j) const { return rep->celem (i, j); }

  T& xelem (const Array<octave_idx_type>& ra_idx)
    { return xelem (compute_index (ra_idx)); }

  T xelem (const Array<octave_idx_type>& ra_idx) const
    { return xelem (compute_index (ra_idx)); }

  // FIXME -- would be nice to fix this so that we don't
  // unnecessarily force a copy, but that is not so easy, and I see no
  // clean way to do it.

  T& checkelem (octave_idx_type n)
    {
      if (n < 0 || n >= numel ())
	return range_error ("T& Sparse<T>::checkelem", n);
      else
	{
	  make_unique ();
	  return xelem (n);
	}
    }

  T& checkelem (octave_idx_type i, octave_idx_type j)
    {
      if (i < 0 || j < 0 || i >= dim1 () || j >= dim2 ())
	return range_error ("T& Sparse<T>::checkelem", i, j);
      else
	{
	  make_unique ();
	  return xelem (i, j);
	}
    }

  T& checkelem (const Array<octave_idx_type>& ra_idx)
    {
      octave_idx_type i = compute_index (ra_idx);

      if (i < 0)
	return range_error ("T& Sparse<T>::checkelem", ra_idx);
      else
	return elem (i);
    }

  T& elem (octave_idx_type n)
    {
      make_unique ();
      return xelem (n);
    }

  T& elem (octave_idx_type i, octave_idx_type j) 
    { 
      make_unique ();
      return xelem (i, j); 
    }

  T& elem (const Array<octave_idx_type>& ra_idx)
    { return Sparse<T>::elem (compute_index (ra_idx)); }

#if defined (BOUNDS_CHECKING)
  T& operator () (octave_idx_type n) { return checkelem (n); }
  T& operator () (octave_idx_type i, octave_idx_type j) { return checkelem (i, j); }
  T& operator () (const Array<octave_idx_type>& ra_idx) { return checkelem (ra_idx); }
#else
  T& operator () (octave_idx_type n) { return elem (n); }
  T& operator () (octave_idx_type i, octave_idx_type j) { return elem (i, j); }
  T& operator () (const Array<octave_idx_type>& ra_idx) { return elem (ra_idx); }
#endif

  T checkelem (octave_idx_type n) const
    {
      if (n < 0 || n >= numel ())
	return range_error ("T Sparse<T>::checkelem", n);
      else
	return xelem (n);
    }

  T checkelem (octave_idx_type i, octave_idx_type j) const
    {
      if (i < 0 || j < 0 || i >= dim1 () || j >= dim2 ())
	return range_error ("T Sparse<T>::checkelem", i, j);
      else
	return xelem (i, j);
    }

  T checkelem (const Array<octave_idx_type>& ra_idx) const
    {
      octave_idx_type i = compute_index (ra_idx);

      if (i < 0)
	return range_error ("T Sparse<T>::checkelem", ra_idx);
      else
	return Sparse<T>::elem (i);
    }

  T elem (octave_idx_type n) const { return xelem (n); }

  T elem (octave_idx_type i, octave_idx_type j) const { return xelem (i, j); }

  T elem (const Array<octave_idx_type>& ra_idx) const
    { return Sparse<T>::elem (compute_index (ra_idx)); }

#if defined (BOUNDS_CHECKING)
  T operator () (octave_idx_type n) const { return checkelem (n); }
  T operator () (octave_idx_type i, octave_idx_type j) const { return checkelem (i, j); }
  T operator () (const Array<octave_idx_type>& ra_idx) const { return checkelem (ra_idx); }
#else
  T operator () (octave_idx_type n) const { return elem (n); }
  T operator () (octave_idx_type i, octave_idx_type j) const { return elem (i, j); }
  T operator () (const Array<octave_idx_type>& ra_idx) const { return elem (ra_idx); }
#endif

  Sparse<T> maybe_compress (bool remove_zeros = false) 
  { rep->maybe_compress (remove_zeros); return (*this); }

  Sparse<T> reshape (const dim_vector& new_dims) const;

  // !!! WARNING !!! -- the following resize_no_fill functions are 
  // public because template friends don't work properly with versions
  // of gcc earlier than 3.3.  You should use these functions only in 
  // classes that are derived from Sparse<T>.

  // protected:

  void resize_no_fill (octave_idx_type r, octave_idx_type c);

  void resize_no_fill (const dim_vector& dv);

public:
  Sparse<T> permute (const Array<octave_idx_type>& vec, bool inv = false) const;

  Sparse<T> ipermute (const Array<octave_idx_type>& vec) const
    { return permute (vec, true); }

  void resize (octave_idx_type r, octave_idx_type c) { resize_no_fill (r, c); }

  void resize (const dim_vector& dv) { resize_no_fill (dv); }

  void change_capacity (octave_idx_type nz) { rep->change_length (nz); }

  Sparse<T>& insert (const Sparse<T>& a, octave_idx_type r, octave_idx_type c);
  Sparse<T>& insert (const Sparse<T>& a, const Array<octave_idx_type>& idx);

  bool is_square (void) const { return (dim1 () == dim2 ()); }

  bool is_empty (void) const { return (rows () < 1 && cols () < 1); }

  Sparse<T> transpose (void) const;

  T* data (void) { make_unique (); return rep->d; }
  T& data (octave_idx_type i) { make_unique (); return rep->data (i); }
  T* xdata (void) { return rep->d; }
  T& xdata (octave_idx_type i) { return rep->data (i); }

  T data (octave_idx_type i) const { return rep->data (i); }
  // FIXME -- shouldn't this be returning const T*?
  T* data (void) const { return rep->d; }

  octave_idx_type* ridx (void) { make_unique (); return rep->r; }
  octave_idx_type& ridx (octave_idx_type i) { make_unique (); return rep->ridx (i); }
  octave_idx_type* xridx (void) { return rep->r; }
  octave_idx_type& xridx (octave_idx_type i) { return rep->ridx (i); }

  octave_idx_type ridx (octave_idx_type i) const { return rep->cridx (i); }
  // FIXME -- shouldn't this be returning const octave_idx_type*?
  octave_idx_type* ridx (void) const { return rep->r; }

  octave_idx_type* cidx (void) { make_unique (); return rep->c; }
  octave_idx_type& cidx (octave_idx_type i) { make_unique (); return rep->cidx (i); }
  octave_idx_type* xcidx (void) { return rep->c; }
  octave_idx_type& xcidx (octave_idx_type i) { return rep->cidx (i); }

  octave_idx_type cidx (octave_idx_type i) const { return rep->ccidx (i); }
  // FIXME -- shouldn't this be returning const octave_idx_type*?
  octave_idx_type* cidx (void) const { return rep->c; }

  octave_idx_type ndims (void) const { return dimensions.length (); }

  void clear_index (void);

  void set_index (const idx_vector& i);

  octave_idx_type index_count (void) const { return idx_count; }

  idx_vector *get_idx (void) const { return idx; }

  void maybe_delete_elements (idx_vector& i);

  void maybe_delete_elements (idx_vector& i, idx_vector& j);

  void maybe_delete_elements (Array<idx_vector>& ra_idx);

  Sparse<T> value (void);

  Sparse<T> index (idx_vector& i, int resize_ok = 0) const;

  Sparse<T> index (idx_vector& i, idx_vector& j, int resize_ok = 0) const;

  Sparse<T> index (Array<idx_vector>& ra_idx, int resize_ok = 0) const;

  void print_info (std::ostream& os, const std::string& prefix) const;

  // Unsafe.  These functions exist to support the MEX interface.
  // You should not use them anywhere else.
  void *mex_get_data (void) const { return const_cast<T *> (data ()); }

  octave_idx_type *mex_get_ir (void) const { return const_cast<octave_idx_type *> (ridx ()); }

  octave_idx_type *mex_get_jc (void) const { return const_cast<octave_idx_type *> (cidx ()); }

  Sparse<T> sort (octave_idx_type dim = 0, sortmode mode = ASCENDING) const;
  Sparse<T> sort (Array<octave_idx_type> &sidx, octave_idx_type dim = 0,
		 sortmode mode = ASCENDING) const;

  Sparse<T> diag (octave_idx_type k = 0) const;

  template <class U, class F>
  Sparse<U>
  map (F fcn) const
  {
    Sparse<U> result;
    U f_zero = fcn (0.);

    if (f_zero != 0.)
      {
	octave_idx_type nr = rows ();
	octave_idx_type nc = cols ();
      
	result = Sparse<U> (nr, nc, f_zero);

	for (octave_idx_type j = 0; j < nc; j++)
	  for (octave_idx_type i = cidx(j); i < cidx (j+1); i++)
	    {
	      OCTAVE_QUIT;
	      /* Use data instead of elem for better performance.  */
	      result.data (ridx (i) + j * nr) = fcn (data(i));
	    }

	result.maybe_compress (true);
      }
    else
      {
	octave_idx_type nz = nnz ();
	octave_idx_type nr = rows ();
	octave_idx_type nc = cols ();

	result = Sparse<U> (nr, nc, nz);
	octave_idx_type ii = 0;
	result.cidx (ii) = 0;

	for (octave_idx_type j = 0; j < nc; j++)
	  {
	    for (octave_idx_type i = cidx(j); i < cidx (j+1); i++)
	      {
		U val = fcn (data (i));
		if (val != 0.0)
		  {
		    result.data (ii) = val;
		    result.ridx (ii++) = ridx (i);
		  }
		OCTAVE_QUIT;
	      }
	    result.cidx (j+1) = ii;
	  }

	result.maybe_compress (false);
      }

    return result;
  }
};

// NOTE: these functions should be friends of the Sparse<T> class and
// Sparse<T>::dimensions should be protected, not public, but we can't
// do that because of bugs in gcc prior to 3.3.

template <class LT, class RT>
/* friend */ int
assign (Sparse<LT>& lhs, const Sparse<RT>& rhs);

template <class LT, class RT>
/* friend */ int
assign1 (Sparse<LT>& lhs, const Sparse<RT>& rhs);

#define INSTANTIATE_SPARSE_ASSIGN(LT, RT, API) \
  template API int assign (Sparse<LT>&, const Sparse<RT>&); \
  template API int assign1 (Sparse<LT>&, const Sparse<RT>&);

#define INSTANTIATE_SPARSE(T, API) \
  template class API Sparse<T>;

#define INSTANTIATE_SPARSE_AND_ASSIGN(T, API) \
  INSTANTIATE_SPARSE (T, API); \
  INSTANTIATE_SPARSE_ASSIGN (T, T, API)

#endif

/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; End: ***
*/