view libinterp/corefcn/symbfact.cc @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 7d6709900da7
children 83f9f8bda883
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1998-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <cmath>

#include <algorithm>
#include <string>

#include "CSparse.h"
#include "boolSparse.h"
#include "dColVector.h"
#include "dSparse.h"
#include "oct-locbuf.h"
#include "oct-sparse.h"
#include "oct-spparms.h"
#include "sparse-util.h"

#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "ovl.h"
#include "parse.h"
#include "utils.h"

OCTAVE_NAMESPACE_BEGIN

DEFUN (symbfact, args, nargout,
       doc: /* -*- texinfo -*-
@deftypefn  {} {[@var{count}, @var{h}, @var{parent}, @var{post}, @var{R}] =} symbfact (@var{S})
@deftypefnx {} {[@dots{}] =} symbfact (@var{S}, @var{typ})
@deftypefnx {} {[@dots{}] =} symbfact (@var{S}, @var{typ}, @var{mode})

Perform a symbolic factorization analysis of the sparse matrix @var{S}.

The input variables are

@table @var
@item S
@var{S} is a real or complex sparse matrix.

@item typ
Is the type of the factorization and can be one of

@table @asis
@item @qcode{"sym"} (default)
Factorize @var{S}.  Assumes @var{S} is symmetric and uses the upper
triangular portion of the matrix.

@item @qcode{"col"}
Factorize @tcode{@var{S}' * @var{S}}.

@item @qcode{"row"}
Factorize @tcode{@var{S} * @var{S}'}.

@item @qcode{"lo"}
Factorize @tcode{@var{S}'}.  Assumes @var{S} is symmetric and uses the lower
triangular portion of the matrix.
@end table

@item mode
When @var{mode} is unspecified return the Cholesky@tie{}factorization for
@var{R}.  If @var{mode} is @qcode{"lower"} or @qcode{"L"} then return
the conjugate transpose @tcode{@var{R}'} which is a lower triangular factor.
The conjugate transpose version is faster and uses less memory, but still
returns the same values for all other outputs: @var{count}, @var{h},
@var{parent}, and @var{post}.
@end table

The output variables are:

@table @var
@item count
The row counts of the Cholesky@tie{}factorization as determined by
@var{typ}.  The computational difficulty of performing the true
factorization using @code{chol} is @code{sum (@var{count} .^ 2)}.

@item h
The height of the elimination tree.

@item parent
The elimination tree itself.

@item post
A sparse boolean matrix whose structure is that of the
Cholesky@tie{}factorization as determined by @var{typ}.
@end table
@seealso{chol, etree, treelayout}
@end deftypefn */)
{
#if defined (HAVE_CHOLMOD)

  int nargin = args.length ();

  if (nargin < 1 || nargin > 3)
    print_usage ();

  octave_value_list retval;

  double dummy;
  cholmod_sparse Astore;
  cholmod_sparse *A = &Astore;
  A->packed = true;
  A->sorted = true;
  A->nz = nullptr;
#if defined (OCTAVE_ENABLE_64)
  A->itype = CHOLMOD_LONG;
#else
  A->itype = CHOLMOD_INT;
#endif
  A->dtype = CHOLMOD_DOUBLE;
  A->stype = 1;
  A->x = &dummy;

  SparseMatrix sm;
  SparseComplexMatrix scm;

  if (args(0).isreal ())
    {
      sm = args(0).sparse_matrix_value ();
      A->nrow = sm.rows ();
      A->ncol = sm.cols ();
      A->p = sm.cidx ();
      A->i = sm.ridx ();
      A->nzmax = sm.nnz ();
      A->xtype = CHOLMOD_REAL;

      if (A->nrow > 0 && A->ncol > 0)
        A->x = sm.data ();
    }
  else if (args(0).iscomplex ())
    {
      scm = args(0).sparse_complex_matrix_value ();
      A->nrow = scm.rows ();
      A->ncol = scm.cols ();
      A->p = scm.cidx ();
      A->i = scm.ridx ();
      A->nzmax = scm.nnz ();
      A->xtype = CHOLMOD_COMPLEX;

      if (A->nrow > 0 && A->ncol > 0)
        A->x = scm.data ();
    }
  else
    err_wrong_type_arg ("symbfact", args(0));

  bool coletree = false;
  octave_idx_type n = A->nrow;

  if (nargin > 1)
    {
      std::string str = args(1).xstring_value ("TYP must be a string");
      // FIXME: The input validation could be improved to use strncmp
      char ch;
      ch = tolower (str[0]);
      if (ch == 'r')          // 'row'
        A->stype = 0;
      else if (ch == 'c')     // 'col'
        {
          n = A->ncol;
          coletree = true;
          A->stype = 0;
        }
      else if (ch == 's')     // 'sym' (default)
        A->stype = 1;
      else if (ch == 'l')     // 'lo'
        A->stype = -1;
      else
        error (R"(symbfact: unrecognized TYP "%s")", str.c_str ());
    }

  if (nargin == 3)
    {
      std::string str = args(2).xstring_value ("MODE must be a string");
      // FIXME: The input validation could be improved to use strncmp
      char ch;
      ch = toupper (str[0]);
      if (ch != 'L')
        error (R"(symbfact: unrecognized MODE "%s")", str.c_str ());
    }

  if (A->stype && A->nrow != A->ncol)
    err_square_matrix_required ("symbfact", "S");

  OCTAVE_LOCAL_BUFFER (suitesparse_integer, Parent, n);
  OCTAVE_LOCAL_BUFFER (suitesparse_integer, Post, n);
  OCTAVE_LOCAL_BUFFER (suitesparse_integer, ColCount, n);
  OCTAVE_LOCAL_BUFFER (suitesparse_integer, First, n);
  OCTAVE_LOCAL_BUFFER (octave_idx_type, Level, n);

  cholmod_common Common;
  cholmod_common *cm = &Common;
  CHOLMOD_NAME(start) (cm);

  double spu = sparse_params::get_key ("spumoni");
  if (spu == 0.0)
    {
      cm->print = -1;
      SUITESPARSE_ASSIGN_FPTR (printf_func, cm->print_function, nullptr);
    }
  else
    {
      cm->print = static_cast<int> (spu) + 2;
      SUITESPARSE_ASSIGN_FPTR (printf_func, cm->print_function, &SparseCholPrint);
    }

  cm->error_handler = &SparseCholError;
  SUITESPARSE_ASSIGN_FPTR2 (divcomplex_func, cm->complex_divide, divcomplex);
  SUITESPARSE_ASSIGN_FPTR2 (hypot_func, cm->hypotenuse, hypot);

  cholmod_sparse *F = CHOLMOD_NAME(transpose) (A, 0, cm);
  cholmod_sparse *Aup, *Alo;

  if (A->stype == 1 || coletree)
    {
      Aup = A;
      Alo = F;
    }
  else
    {
      Aup = F;
      Alo = A;
    }

  CHOLMOD_NAME(etree) (Aup, Parent, cm);

  ColumnVector tmp (n);    // Declaration must precede any goto cleanup.
  std::string err_msg;

  if (cm->status < CHOLMOD_OK)
    {
      err_msg = "symbfact: matrix corrupted";
      goto cleanup;
    }

  if (CHOLMOD_NAME(postorder) (Parent, n, nullptr, Post, cm) != n)
    {
      err_msg = "symbfact: postorder failed";
      goto cleanup;
    }

  CHOLMOD_NAME(rowcolcounts) (Alo, nullptr, 0, Parent, Post, nullptr, ColCount,
                              First, to_suitesparse_intptr (Level), cm);

  if (cm->status < CHOLMOD_OK)
    {
      err_msg = "symbfact: matrix corrupted";
      goto cleanup;
    }

  if (nargout > 4)
    {
      cholmod_sparse *A1, *A2;

      if (A->stype == 1)
        {
          A1 = A;
          A2 = nullptr;
        }
      else if (A->stype == -1)
        {
          A1 = F;
          A2 = nullptr;
        }
      else if (coletree)
        {
          A1 = F;
          A2 = A;
        }
      else
        {
          A1 = A;
          A2 = F;
        }

      // count the total number of entries in L
      octave_idx_type lnz = 0;
      for (octave_idx_type j = 0 ; j < n ; j++)
        lnz += ColCount[j];

      // allocate the output matrix L (pattern-only)
      SparseBoolMatrix L (dim_vector (n, n), lnz);

      // initialize column pointers
      lnz = 0;
      for (octave_idx_type j = 0 ; j < n ; j++)
        {
          L.xcidx(j) = lnz;
          lnz += ColCount[j];
        }
      L.xcidx(n) = lnz;

      // create a copy of the column pointers
      suitesparse_integer *W = First;
      for (octave_idx_type j = 0 ; j < n ; j++)
        W[j] = L.xcidx (j);

      // get workspace for computing one row of L
      cholmod_sparse *R
        = CHOLMOD_NAME(allocate_sparse) (n, 1, n, false, true,
                                         0, CHOLMOD_PATTERN, cm);
      octave_idx_type *Rp = static_cast<octave_idx_type *> (R->p);
      octave_idx_type *Ri = static_cast<octave_idx_type *> (R->i);

      // compute L one row at a time
      for (octave_idx_type k = 0 ; k < n ; k++)
        {
          // get the kth row of L and store in the columns of L
          CHOLMOD_NAME(row_subtree) (A1, A2, k, Parent, R, cm);
          for (octave_idx_type p = 0 ; p < Rp[1] ; p++)
            L.xridx (W[Ri[p]]++) = k;

          // add the diagonal entry
          L.xridx (W[k]++) = k;
        }

      // free workspace
      CHOLMOD_NAME(free_sparse) (&R, cm);

      // fill L with one's
      std::fill_n (L.xdata (), lnz, true);

      // transpose L to get R, or leave as is
      if (nargin < 3)
        L = L.transpose ();

      retval(4) = L;
    }

  if (nargout > 3)
    {
      for (octave_idx_type i = 0; i < n; i++)
        tmp(i) = Post[i] + 1;
      retval(3) = tmp;
    }

  if (nargout > 2)
    {
      for (octave_idx_type i = 0; i < n; i++)
        tmp(i) = Parent[i] + 1;
      retval(2) = tmp;
    }

  if (nargout > 1)
    {
      // compute the elimination tree height
      octave_idx_type height = 0;
      for (int i = 0 ; i < n ; i++)
        height = std::max (height, Level[i]);
      height++;
      retval(1) = static_cast<double> (height);
    }

  for (octave_idx_type i = 0; i < n; i++)
    tmp(i) = ColCount[i];
  retval(0) = tmp;

cleanup:
  CHOLMOD_NAME(free_sparse) (&F, cm);
  CHOLMOD_NAME(finish) (cm);

  if (! err_msg.empty ())
    error ("%s", err_msg.c_str ());

  return retval;

#else

  octave_unused_parameter (args);
  octave_unused_parameter (nargout);

  err_disabled_feature ("symbfact", "CHOLMOD");

#endif
}

/*
%!testif HAVE_CHOLMOD
%! A = sparse (magic (3));
%! [count, h, parent, post, r] = symbfact (A);
%! assert (count, [3; 2; 1]);
%! assert (h, 3);
%! assert (parent, [2; 3; 0]);
%! assert (r, sparse (triu (true (3))));

%!testif HAVE_CHOLMOD
%! ## Test MODE "lower"
%! A = sparse (magic (3));
%! [~, ~, ~, ~, l] = symbfact (A, "sym", "lower");
%! assert (l, sparse (tril (true (3))));

%!testif HAVE_CHOLMOD <*42587>
%! ## singular matrix
%! A = sparse ([1 0 8;0 1 8;8 8 1]);
%! [count, h, parent, post, r] = symbfact (A);

## Test input validation
%!testif HAVE_CHOLMOD
%! fail ("symbfact ()");
%! fail ("symbfact (1,2,3,4)");
%! fail ("symbfact ({1})", "wrong type argument 'cell'");
%! fail ("symbfact (sparse (1), {1})", "TYP must be a string");
%! fail ("symbfact (sparse (1), 'foobar')", 'unrecognized TYP "foobar"');
%! fail ("symbfact (sparse (1), 'sym', {'L'})", "MODE must be a string");
%! fail ('symbfact (sparse (1), "sym", "foobar")', 'unrecognized MODE "foobar"');
%! fail ("symbfact (sparse ([1, 2; 3, 4; 5, 6]))", "S must be a square matrix");

*/

OCTAVE_NAMESPACE_END