view liboctave/numeric/bsxfun-defs.cc @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 7faff48840eb
children
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2009-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if ! defined (octave_bsxfun_defs_h)
#define octave_bsxfun_defs_h 1

// This file should *not* include config.h.  It is only included in other C++
// source files that should have included config.h before including this file.

#include <algorithm>

#include "dim-vector.h"
#include "lo-error.h"
#include "mx-inlines.cc"
#include "oct-locbuf.h"

template <typename R, typename X, typename Y>
Array<R>
do_bsxfun_op (const Array<X>& x, const Array<Y>& y,
              void (*op_vv) (std::size_t, R *, const X *, const Y *),
              void (*op_sv) (std::size_t, R *, X, const Y *),
              void (*op_vs) (std::size_t, R *, const X *, Y))
{
  int nd = std::max (x.ndims (), y.ndims ());
  dim_vector dvx = x.dims ().redim (nd);
  dim_vector dvy = y.dims ().redim (nd);

  // Construct the result dimensions.
  dim_vector dvr;
  dvr.resize (nd);
  for (int i = 0; i < nd; i++)
    {
      octave_idx_type xk = dvx(i);
      octave_idx_type yk = dvy(i);
      if (xk == 1)
        dvr(i) = yk;
      else if (yk == 1 || xk == yk)
        dvr(i) = xk;
      else
        (*current_liboctave_error_handler)
          ("bsxfun: nonconformant dimensions: %s and %s",
           x.dims ().str ().c_str (), y.dims ().str ().c_str ());
    }

  Array<R> retval (dvr);

  const X *xvec = x.data ();
  const Y *yvec = y.data ();
  R *rvec = retval.fortran_vec ();

  // Fold the common leading dimensions.
  octave_idx_type start, ldr = 1;
  for (start = 0; start < nd; start++)
    {
      if (dvx(start) != dvy(start))
        break;
      ldr *= dvr(start);
    }

  if (retval.isempty ())
    ; // do nothing
  else if (start == nd)
    op_vv (retval.numel (), rvec, xvec, yvec);
  else
    {
      // Determine the type of the low-level loop.
      bool xsing = false;
      bool ysing = false;
      if (ldr == 1)
        {
          xsing = dvx(start) == 1;
          ysing = dvy(start) == 1;
          if (xsing || ysing)
            {
              ldr *= dvx(start) * dvy(start);
              start++;
            }
        }
      dim_vector cdvx = dvx.cumulative ();
      dim_vector cdvy = dvy.cumulative ();
      // Nullify singleton dims to achieve a spread effect.
      for (int i = std::max (start, octave_idx_type (1)); i < nd; i++)
        {
          if (dvx(i) == 1)
            cdvx(i-1) = 0;
          if (dvy(i) == 1)
            cdvy(i-1) = 0;
        }

      octave_idx_type niter = dvr.numel (start);
      // The index array.
      OCTAVE_LOCAL_BUFFER_INIT (octave_idx_type, idx, nd, 0);
      for (octave_idx_type iter = 0; iter < niter; iter++)
        {
          octave_quit ();

          // Compute indices.
          // FIXME: performance impact noticeable?
          octave_idx_type xidx = cdvx.cum_compute_index (idx);
          octave_idx_type yidx = cdvy.cum_compute_index (idx);
          octave_idx_type ridx = dvr.compute_index (idx);

          // Apply the low-level loop.
          if (xsing)
            op_sv (ldr, rvec + ridx, xvec[xidx], yvec + yidx);
          else if (ysing)
            op_vs (ldr, rvec + ridx, xvec + xidx, yvec[yidx]);
          else
            op_vv (ldr, rvec + ridx, xvec + xidx, yvec + yidx);

          dvr.increment_index (idx + start, start);
        }
    }

  return retval;
}

template <typename R, typename X>
void
do_inplace_bsxfun_op (Array<R>& r, const Array<X>& x,
                      void (*op_vv) (std::size_t, R *, const X *),
                      void (*op_vs) (std::size_t, R *, X))
{
  dim_vector dvr = r.dims ();
  dim_vector dvx = x.dims ();
  octave_idx_type nd = r.ndims ();
  dvx.redim (nd);

  const X *xvec = x.data ();
  R *rvec = r.fortran_vec ();

  // Fold the common leading dimensions.
  octave_idx_type start, ldr = 1;
  for (start = 0; start < nd; start++)
    {
      if (dvr(start) != dvx(start))
        break;
      ldr *= dvr(start);
    }

  if (r.isempty ())
    ; // do nothing
  else if (start == nd)
    op_vv (r.numel (), rvec, xvec);
  else
    {
      // Determine the type of the low-level loop.
      bool xsing = false;
      if (ldr == 1)
        {
          xsing = dvx(start) == 1;
          if (xsing)
            {
              ldr *= dvr(start) * dvx(start);
              start++;
            }
        }

      dim_vector cdvx = dvx.cumulative ();
      // Nullify singleton dims to achieve a spread effect.
      for (int i = std::max (start, octave_idx_type (1)); i < nd; i++)
        {
          if (dvx(i) == 1)
            cdvx(i-1) = 0;
        }

      octave_idx_type niter = dvr.numel (start);
      // The index array.
      OCTAVE_LOCAL_BUFFER_INIT (octave_idx_type, idx, nd, 0);
      for (octave_idx_type iter = 0; iter < niter; iter++)
        {
          octave_quit ();

          // Compute indices.
          // FIXME: performance impact noticeable?
          octave_idx_type xidx = cdvx.cum_compute_index (idx);
          octave_idx_type ridx = dvr.compute_index (idx);

          // Apply the low-level loop.
          if (xsing)
            op_vs (ldr, rvec + ridx, xvec[xidx]);
          else
            op_vv (ldr, rvec + ridx, xvec + xidx);

          dvr.increment_index (idx + start, start);
        }
    }
}

#define BSXFUN_OP_DEF(OP, ARRAY)                        \
  ARRAY bsxfun_ ## OP (const ARRAY& x, const ARRAY& y)

#define BSXFUN_OP2_DEF(OP, ARRAY, ARRAY1, ARRAY2)               \
  ARRAY bsxfun_ ## OP (const ARRAY1& x, const ARRAY2& y)

#define BSXFUN_REL_DEF(OP, ARRAY)                               \
  boolNDArray bsxfun_ ## OP (const ARRAY& x, const ARRAY& y)

#define BSXFUN_OP_DEF_MXLOOP(OP, ARRAY, LOOP)                           \
  BSXFUN_OP_DEF(OP, ARRAY)                                              \
  { return do_bsxfun_op<ARRAY::element_type, ARRAY::element_type, ARRAY::element_type> \
      (x, y, LOOP, LOOP, LOOP); }

#define BSXFUN_OP2_DEF_MXLOOP(OP, ARRAY, ARRAY1, ARRAY2, LOOP)          \
  BSXFUN_OP2_DEF(OP, ARRAY, ARRAY1, ARRAY2)                             \
  { return do_bsxfun_op<ARRAY::element_type, ARRAY1::element_type, ARRAY2::element_type> \
      (x, y, LOOP, LOOP, LOOP); }

#define BSXFUN_REL_DEF_MXLOOP(OP, ARRAY, LOOP)                          \
  BSXFUN_REL_DEF(OP, ARRAY)                                             \
  { return do_bsxfun_op<bool, ARRAY::element_type, ARRAY::element_type> \
      (x, y, LOOP, LOOP, LOOP); }

#define BSXFUN_STDOP_DEFS_MXLOOP(ARRAY)                 \
  BSXFUN_OP_DEF_MXLOOP (add, ARRAY, mx_inline_add)      \
  BSXFUN_OP_DEF_MXLOOP (sub, ARRAY, mx_inline_sub)      \
  BSXFUN_OP_DEF_MXLOOP (mul, ARRAY, mx_inline_mul)      \
  BSXFUN_OP_DEF_MXLOOP (div, ARRAY, mx_inline_div)      \
  BSXFUN_OP_DEF_MXLOOP (min, ARRAY, mx_inline_xmin)     \
  BSXFUN_OP_DEF_MXLOOP (max, ARRAY, mx_inline_xmax)

#define BSXFUN_STDREL_DEFS_MXLOOP(ARRAY)                \
  BSXFUN_REL_DEF_MXLOOP (eq, ARRAY, mx_inline_eq)       \
  BSXFUN_REL_DEF_MXLOOP (ne, ARRAY, mx_inline_ne)       \
  BSXFUN_REL_DEF_MXLOOP (lt, ARRAY, mx_inline_lt)       \
  BSXFUN_REL_DEF_MXLOOP (le, ARRAY, mx_inline_le)       \
  BSXFUN_REL_DEF_MXLOOP (gt, ARRAY, mx_inline_gt)       \
  BSXFUN_REL_DEF_MXLOOP (ge, ARRAY, mx_inline_ge)

//For bsxfun power with mixed integer/float types
#define BSXFUN_POW_MIXED_MXLOOP(INT_TYPE)                               \
  BSXFUN_OP2_DEF_MXLOOP (pow, INT_TYPE, INT_TYPE, NDArray, mx_inline_pow) \
  BSXFUN_OP2_DEF_MXLOOP (pow, INT_TYPE, INT_TYPE, FloatNDArray, mx_inline_pow) \
  BSXFUN_OP2_DEF_MXLOOP (pow, INT_TYPE, NDArray, INT_TYPE,  mx_inline_pow) \
  BSXFUN_OP2_DEF_MXLOOP (pow, INT_TYPE, FloatNDArray, INT_TYPE, mx_inline_pow)

#endif