view scripts/linear-algebra/expm.m @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 42dc5cf93f83
children 5d3faba0342e
line wrap: on
line source

########################################################################
##
## Copyright (C) 2008-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn {} {} expm (@var{A})
## Return the exponential of a matrix.
##
## The matrix exponential is defined as the infinite Taylor series
## @tex
## $$
##  \exp (A) = I + A + {A^2 \over 2!} + {A^3 \over 3!} + \cdots
## $$
## @end tex
## @ifnottex
##
## @example
## expm (A) = I + A + A^2/2! + A^3/3! + @dots{}
## @end example
##
## @end ifnottex
## However, the Taylor series is @emph{not} the way to compute the matrix
## exponential; see @nospell{Moler and Van Loan}, @cite{Nineteen Dubious Ways
## to Compute the Exponential of a Matrix}, SIAM Review, 1978.  This routine
## uses Ward's diagonal Pad@'e approximation method with three step
## preconditioning (SIAM Journal on Numerical Analysis, 1977).  Diagonal
## Pad@'e approximations are rational polynomials of matrices
## @tex
## $D_q(A)^{-1}N_q(A)$
## @end tex
## @ifnottex
##
## @example
## @group
##      -1
## D (A)   N (A)
## @end group
## @end example
##
## @end ifnottex
## whose Taylor series matches the first
## @tex
## $2 q + 1 $
## @end tex
## @ifnottex
## @code{2q+1}
## @end ifnottex
## terms of the Taylor series above; direct evaluation of the Taylor series
## (with the same preconditioning steps) may be desirable in lieu of the
## Pad@'e approximation when
## @tex
## $D_q(A)$
## @end tex
## @ifnottex
## @code{Dq(A)}
## @end ifnottex
## is ill-conditioned.
## @seealso{logm, sqrtm}
## @end deftypefn

function r = expm (A)

  if (nargin < 1)
    print_usage ();
  endif

  if (! isnumeric (A) || ! issquare (A))
    error ("expm: A must be a square matrix");
  endif

  if (isempty (A))
    r = A;
    return;
  elseif (isscalar (A))
    r = exp (A);
    return;
  elseif (isdiag (A))
    r = diag (exp (diag (A)));
    return;
  endif

  n = rows (A);
  id = eye (n);
  ## Trace reduction.
  A(A == -Inf) = -realmax ();
  trshift = trace (A) / n;
  if (trshift > 0)
    A -= trshift * id;
  endif
  ## Balancing.
  [d, p, aa] = balance (A);
  [~, e] = log2 (norm (aa, "inf"));
  s = max (0, e);
  s = min (s, 1023);
  aa *= 2^(-s);

  ## Pade approximation for exp(A).
  c = [5.0000000000000000e-1, ...
       1.1666666666666667e-1, ...
       1.6666666666666667e-2, ...
       1.6025641025641026e-3, ...
       1.0683760683760684e-4, ...
       4.8562548562548563e-6, ...
       1.3875013875013875e-7, ...
       1.9270852604185938e-9];

  a2 = aa^2;
  x = (((c(8) * a2 + c(6) * id) * a2 + c(4) * id) * a2 + c(2) * id) * a2 + id;
  y = (((c(7) * a2 + c(5) * id) * a2 + c(3) * id) * a2 + c(1) * id) * aa;

  r = (x - y) \ (x + y);

  ## Undo scaling by repeated squaring.
  for k = 1:s
    r ^= 2;
  endfor

  ## inverse balancing.
  d = diag (d);
  r = d * r / d;
  r(p, p) = r;
  ## Inverse trace reduction.
  if (trshift > 0)
    r *= exp (trshift);
  endif

endfunction


%!assert (norm (expm ([1 -1;0 1]) - [e -e; 0 e]) < 1e-5)
%!assert (expm ([1 -1 -1;0 1 -1; 0 0 1]), [e -e -e/2; 0 e -e; 0 0 e], 1e-5)

%!assert (expm ([]), [])
%!assert (expm (10), exp (10))
%!assert (full (expm (eye (3))), expm (full (eye (3))))
%!assert (full (expm (10*eye (3))), expm (full (10*eye (3))), 8*eps)
%!assert (expm (zeros (3)), eye (3))

## Test input validation
%!error <Invalid call> expm ()
%!error <expm: A must be a square matrix> expm ({1})
%!error <expm: A must be a square matrix> expm ([1 0;0 1; 2 2])