view scripts/specfun/expint.m @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 2d17a87740dd
children 5d3faba0342e
line wrap: on
line source

########################################################################
##
## Copyright (C) 2018-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn {} {} expint (@var{x})
## Compute the exponential integral.
##
## The exponential integral is defined as:
##
## @tex
## $$
## {\rm E_1} (x) = \int_x^\infty {e^{-t} \over t} dt
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##            +oo
##           /
##           | exp (-t)
## E_1 (x) = | -------- dt
##           |    t
##           /
##          x
## @end group
## @end example
##
## @end ifnottex
##
## Note: For compatibility, this function uses the @sc{matlab} definition
## of the exponential integral.  Most other sources refer to this particular
## value as @math{E_1 (x)}, and the exponential integral as
## @tex
## $$
## {\rm Ei} (x) = - \int_{-x}^\infty {e^{-t} \over t} dt.
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##             +oo
##            /
##            | exp (-t)
## Ei (x) = - | -------- dt
##            |    t
##            /
##          -x
## @end group
## @end example
##
## @end ifnottex
## The two definitions are related, for positive real values of @var{x}, by
## @tex
## $
## E_1 (-x) = -{\rm Ei} (x) - i\pi.
## $
## @end tex
## @ifnottex
## @w{@code{E_1 (-x) = -Ei (x) - i*pi}}.
## @end ifnottex
##
## References:
##
## @nospell{M. Abramowitz and I.A. Stegun},
## @cite{Handbook of Mathematical Functions}, 1964.
##
## @nospell{N. Bleistein and R.A. Handelsman},
## @cite{Asymptotic expansions of integrals}, 1986.
##
## @seealso{cosint, sinint, exp}
## @end deftypefn

function E1 = expint (x)

  if (nargin < 1)
    print_usage ();
  endif

  if (! isnumeric (x))
    error ("expint: X must be numeric");
  endif

  ## Convert to floating point if necessary
  if (isinteger (x))
    x = double (x);
  endif

  orig_sparse = issparse (x);
  orig_sz = size (x);
  x = x(:);  # convert to column vector

  ## Initialize the result
  if (isreal (x) && x >= 0)
    E1 = zeros (size (x), class (x));
  else
    E1 = complex (zeros (size (x), class (x)));
  endif
  tol = eps (class (x));

  ## Divide the input into 3 regions and apply a different algorithm for each.
  ## s = series expansion, cf = continued fraction, a = asymptotic series
  s_idx = (((real (x) + 19.5).^ 2 ./ (20.5^2) + ...
            imag (x).^2 ./ (10^2)) <= 1) ...
          | (real (x) < 0 & abs (imag (x)) <= 1e-8);
  cf_idx = ((((real (x) + 1).^2 ./ (38^2) + ...
              imag (x).^2 ./ (40^2)) <= 1) ...
            & (! s_idx)) & (real (x) <= 35);
  a_idx = (! s_idx) & (! cf_idx);
  x_s  = x(s_idx);
  x_cf = x(cf_idx);
  x_a  = x(a_idx);

  ## Series expansion
  ## Abramowitz, Stegun, "Handbook of Mathematical Functions",
  ## formula 5.1.11, p 229.
  ## FIXME: Why so long?  IEEE double doesn't have this much precision.
  gm = 0.577215664901532860606512090082402431042159335;
  e1_s = -gm - log (x_s);
  res = -x_s;
  ssum = res;
  k = 1;
  todo = true (size (res));
  while (k < 1e3 && any (todo))
    res(todo) .*= (k * (- x_s(todo)) / ((k + 1) ^ 2));
    ssum(todo) += res(todo);
    k += 1;
    todo = (abs (res) > (tol * abs (ssum)));
  endwhile
  e1_s -= ssum;

  ## Continued fraction expansion,
  ## Abramowitz, Stegun, "Handbook of Mathematical Functions",
  ## formula 5.1.22, p 229.
  ## Modified Lentz's algorithm, from "Numerical recipes in Fortran 77" p.165.

  e1_cf = exp (-x_cf) .* __expint__ (x_cf);

  ## Remove spurious imaginary part if needed (__expint__ works automatically
  ## with complex values)

  if (isreal (x_cf) && x_cf >= 0)
    e1_cf = real (e1_cf);
  endif

  ## Asymptotic series, from N. Bleistein and R.A. Handelsman
  ## "Asymptotic expansion of integrals", pages 1-4.
  e1_a = exp (-x_a) ./ x_a;
  ssum = res = ones (size (x_a), class (x_a));
  k = 0;
  todo = true (size (x_a));
  while (k < 1e3 && any (todo))
    res(todo) ./= (- x_a(todo) / (k + 1));
    ssum(todo) += res(todo);
    k += 1;
    todo = abs (x_a) > k;
  endwhile
  e1_a .*= ssum;

  ## Combine results from each region into final output
  E1(s_idx)  = e1_s;
  E1(cf_idx) = e1_cf;
  E1(a_idx)  = e1_a;

  ## Restore shape and sparsity of input
  E1 = reshape (E1, orig_sz);
  if (orig_sparse)
    E1 = sparse (E1);
  endif

endfunction


## The following values were computed with the Octave symbolic package
%!test
%! X = [-50 - 50i  -30 - 50i  -10 - 50i    5 - 50i   15 - 50i   25 - 50i
%!      -50 - 30i  -30 - 30i  -10 - 30i    5 - 30i   15 - 30i   25 - 30i
%!      -50 - 10i  -30 - 10i  -10 - 10i    5 - 10i   15 - 10i   25 - 10i
%!      -50 +  5i  -30 +  5i  -10 +  5i    5 +  5i   15 +  5i   25 +  5i
%!      -50 + 15i  -30 + 15i  -10 + 15i    5 + 15i   15 + 15i   25 + 15i
%!      -50 + 25i  -30 + 25i  -10 + 25i    5 + 25i   15 + 25i   25 + 25i];
%! y_exp = [ -3.61285286166493e+19 + 6.46488018613387e+19i, ...
%!           -4.74939752018180e+10 + 1.78647798300364e+11i, ...
%!            3.78788822381261e+01 + 4.31742823558278e+02i, ...
%!            5.02062497548626e-05 + 1.23967883532795e-04i, ...
%!            3.16785290137650e-09 + 4.88866651583182e-09i, ...
%!            1.66999261039533e-13 + 1.81161508735941e-13i;
%!            3.47121527628275e+19 + 8.33104448629260e+19i, ...
%!            1.54596484273693e+11 + 2.04179357837414e+11i, ...
%!            6.33946547999647e+02 + 3.02965459323125e+02i, ...
%!            2.19834747595065e-04 - 9.25266900230165e-06i, ...
%!            8.49515487435091e-09 - 2.95133588338825e-09i, ...
%!            2.96635342439717e-13 - 1.85401806861382e-13i;
%!            9.65535916388246e+19 + 3.78654062133933e+19i, ...
%!            3.38477774418380e+11 + 8.37063899960569e+10i, ...
%!            1.57615042657685e+03 - 4.33777639047543e+02i, ...
%!            2.36176542789578e-05 - 5.75861972980636e-04i, ...
%!           -6.83624588479039e-09 - 1.47230889442175e-08i, ...
%!           -2.93020801760942e-13 - 4.03912221595793e-13i;
%!           -1.94572937469407e+19 - 1.03494929263031e+20i, ...
%!           -4.22385087573180e+10 - 3.61103191095041e+11i, ...
%!            4.89771220858552e+02 - 2.09175729060712e+03i, ...
%!            7.26650666035639e-04 + 4.71027801635222e-04i, ...
%!            1.02146578536128e-08 + 1.51813977370467e-08i, ...
%!            2.41628751621686e-13 + 4.66309048729523e-13i;
%!            5.42351559144068e+19 + 8.54503231614651e+19i, ...
%!            1.22886461074544e+11 + 3.03555953589323e+11i, ...
%!           -2.13050339387819e+02 + 1.23853666784218e+03i, ...
%!           -3.68087391884738e-04 + 1.94003994408861e-04i, ...
%!           -1.39355838231763e-08 + 6.57189276453356e-10i, ...
%!           -4.55133112151501e-13 - 8.46035902535333e-14i;
%!           -7.75482228205081e+19 - 5.36017490438329e+19i, ...
%!           -1.85284579257329e+11 - 2.08761110392897e+11i, ...
%!           -1.74210199269860e+02 - 8.09467914953486e+02i, ...
%!            9.40470496160143e-05 - 2.44265223110736e-04i, ...
%!            6.64487526601190e-09 - 7.87242868014498e-09i, ...
%!            3.10273337426175e-13 - 2.28030229776792e-13i];
%! assert (expint (X), y_exp, -1e-14);

## Exceptional values (-Inf, Inf, NaN, 0, 0.37250741078)
%!test
%! x = [-Inf; Inf; NaN; 0; -0.3725074107813668];
%! y_exp = [-Inf - i*pi; 0; NaN; Inf; 0 - i*pi];
%! y = expint (x);
%! assert (y, y_exp, 5*eps);

%!test <*53351>
%! assert (expint (32.5 + 1i),
%!         1.181108930758065e-16 - 1.966348533426658e-16i, -4*eps);
%! assert (expint (44 + 1i),
%!         9.018757389858152e-22 - 1.475771020004195e-21i, -4*eps);

%!test <*47738>
%! assert (expint (10i), 0.0454564330044554 + 0.0875512674239774i, -5*eps);

## Test preservation or conversion of the class
%!assert (class (expint (single (1))), "single")
%!assert (class (expint (int8 (1))), "double")
%!assert (class (expint (int16 (1))), "double")
%!assert (class (expint (int32 (1))), "double")
%!assert (class (expint (int64 (1))), "double")
%!assert (class (expint (uint8 (1))), "double")
%!assert (class (expint (uint16 (1))), "double")
%!assert (class (expint (uint32 (1))), "double")
%!assert (class (expint (uint64 (1))), "double")
%!assert (issparse (expint (sparse (1))))

## Test on the correct Image set
%!assert (isreal (expint (linspace (0, 100))))
%!assert (! isreal (expint (-1)))

## Test input validation
%!error <Invalid call> expint ()
%!error <X must be numeric> expint ("1")