diff liboctave/randpoisson.c @ 5742:2cd0af543e7a

[project @ 2006-04-06 08:15:49 by jwe]
author jwe
date Thu, 06 Apr 2006 08:15:49 +0000
parents
children ace8d8d26933
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/liboctave/randpoisson.c	Thu Apr 06 08:15:49 2006 +0000
@@ -0,0 +1,446 @@
+/* This code is in the public domain */
+
+/* Needs the following defines: 
+ * NAN: value to return for Not-A-Number
+ * RUNI: uniform generator on (0,1)
+ * RNOR: normal generator
+ * LGAMMA: log gamma function
+ * INFINITE: function to test whether a value is infinite
+ */
+
+#if defined (HAVE_CONFIG_H)
+#include <config.h>
+#endif
+
+#include <math.h>
+#include <stdio.h>
+
+#include "f77-fcn.h"
+#include "lo-ieee.h"
+#include "lo-error.h"
+#include "randmtzig.h"
+#include "randpoisson.h"
+
+#undef NAN
+#define NAN octave_NaN
+#define INFINITE lo_ieee_isinf
+#define RUNI oct_randu()
+#define RNOR oct_randn()
+#define LGAMMA xlgamma
+
+F77_RET_T
+F77_FUNC (dlgams, DLGAMS) (const double *, double *, double *);
+
+static double
+xlgamma (double x)
+{
+  double result;
+  double sgngam;
+
+  if (lo_ieee_isnan (x))
+    result = x;
+  else if (x <= 0 || lo_ieee_isinf (x))
+    result = octave_Inf;
+  else
+    F77_XFCN (dlgams, DLGAMS, (&x, &result, &sgngam));
+
+  return result;
+}
+
+/* ---- pprsc.c from Stadloeber's winrand --- */
+
+#include <math.h>
+
+/* flogfak(k) = ln(k!) */
+static double 
+flogfak (double k)
+{
+#define       C0      9.18938533204672742e-01
+#define       C1      8.33333333333333333e-02
+#define       C3     -2.77777777777777778e-03
+#define       C5      7.93650793650793651e-04
+#define       C7     -5.95238095238095238e-04
+
+  static double logfak[30L] = {
+    0.00000000000000000,   0.00000000000000000,   0.69314718055994531,
+    1.79175946922805500,   3.17805383034794562,   4.78749174278204599,
+    6.57925121201010100,   8.52516136106541430,  10.60460290274525023,
+    12.80182748008146961,  15.10441257307551530,  17.50230784587388584,
+    19.98721449566188615,  22.55216385312342289,  25.19122118273868150,
+    27.89927138384089157,  30.67186010608067280,  33.50507345013688888,
+    36.39544520803305358,  39.33988418719949404,  42.33561646075348503,
+    45.38013889847690803,  48.47118135183522388,  51.60667556776437357,
+    54.78472939811231919,  58.00360522298051994,  61.26170176100200198,
+    64.55753862700633106,  67.88974313718153498,  71.25703896716800901
+  };
+  
+  double  r, rr;
+  
+  if (k >= 30.0) 
+    {
+      r  = 1.0 / k;
+      rr = r * r;
+      return ((k + 0.5)*log(k) - k + C0 + r*(C1 + rr*(C3 + rr*(C5 + rr*C7))));
+    }
+  else
+    return (logfak[(int)k]);
+}
+
+
+/******************************************************************
+ *                                                                *
+ * Poisson Distribution - Patchwork Rejection/Inversion  *
+ *                                                                *
+ ******************************************************************
+ *                                                                *
+ * For parameter  my < 10  Tabulated Inversion is applied.        *
+ * For my >= 10  Patchwork Rejection is employed:                 *
+ * The area below the histogram function f(x) is rearranged in    *
+ * its body by certain point reflections. Within a large center   *
+ * interval variates are sampled efficiently by rejection from    *
+ * uniform hats. Rectangular immediate acceptance regions speed   *
+ * up the generation. The remaining tails are covered by          *
+ * exponential functions.                                         *
+ *                                                                *
+ ******************************************************************
+ *                                                                *
+ * FUNCTION :   - pprsc samples a random number from the Poisson  *
+ *                distribution with parameter my > 0.             *
+ * REFERENCE :  - H. Zechner (1994): Efficient sampling from      *
+ *                continuous and discrete unimodal distributions, *
+ *                Doctoral Dissertation, 156 pp., Technical       *
+ *                University Graz, Austria.                       *
+ * SUBPROGRAM : - drand(seed) ... (0,1)-Uniform generator with    *
+ *                unsigned long integer *seed.                    *
+ *                                                                *
+ * Implemented by H. Zechner, January 1994                        *
+ * Revised by F. Niederl, July 1994                               *
+ *                                                                *
+ ******************************************************************/
+
+static double 
+f (double k, double l_nu, double c_pm)
+{
+  return exp(k * l_nu - flogfak(k) - c_pm);
+}
+
+static double 
+pprsc (double my)
+{
+  static double        my_last = -1.0;
+  static double        m,  k2, k4, k1, k5;
+  static double        dl, dr, r1, r2, r4, r5, ll, lr, l_my, c_pm,
+    f1, f2, f4, f5, p1, p2, p3, p4, p5, p6;
+  double               Dk, X, Y;
+  double               Ds, U, V, W;
+  
+  if (my != my_last)
+    {                               /* set-up           */
+      my_last = my;
+      /* approximate deviation of reflection points k2, k4 from my - 1/2 */
+      Ds = sqrt(my + 0.25);
+      
+      /* mode m, reflection points k2 and k4, and points k1 and k5,      */
+      /* which delimit the centre region of h(x)                         */
+      m  = floor(my);
+      k2 = ceil(my - 0.5 - Ds);
+      k4 = floor(my - 0.5 + Ds);
+      k1 = k2 + k2 - m + 1L;
+      k5 = k4 + k4 - m;
+      
+      /* range width of the critical left and right centre region        */
+      dl = (k2 - k1);
+      dr = (k5 - k4);
+      
+      /* recurrence constants r(k)=p(k)/p(k-1) at k = k1, k2, k4+1, k5+1 */
+      r1 = my / k1;
+      r2 = my / k2;
+      r4 = my / (k4 + 1.0);
+      r5 = my / (k5 + 1.0);
+
+      /* reciprocal values of the scale parameters of exp. tail envelope */
+      ll =  log(r1);                                 /* expon. tail left */
+      lr = -log(r5);                                 /* expon. tail right*/
+      
+      /* Poisson constants, necessary for computing function values f(k) */
+      l_my = log(my);
+      c_pm = m * l_my - flogfak(m);
+      
+      /* function values f(k) = p(k)/p(m) at k = k2, k4, k1, k5          */
+      f2 = f(k2, l_my, c_pm);
+      f4 = f(k4, l_my, c_pm);
+      f1 = f(k1, l_my, c_pm);
+      f5 = f(k5, l_my, c_pm);
+      
+      /* area of the two centre and the two exponential tail regions     */
+      /* area of the two immediate acceptance regions between k2, k4     */
+      p1 = f2 * (dl + 1.0);                            /* immed. left    */
+      p2 = f2 * dl         + p1;                       /* centre left    */
+      p3 = f4 * (dr + 1.0) + p2;                       /* immed. right   */
+      p4 = f4 * dr         + p3;                       /* centre right   */
+      p5 = f1 / ll         + p4;                       /* exp. tail left */
+      p6 = f5 / lr         + p5;                       /* exp. tail right*/
+    }
+  
+  for (;;)
+    {
+      /* generate uniform number U -- U(0, p6)                           */
+      /* case distinction corresponding to U                             */
+      if ((U = RUNI * p6) < p2)
+	{                                            /* centre left      */
+	  
+	  /* immediate acceptance region 
+	     R2 = [k2, m) *[0, f2),  X = k2, ... m -1 */
+	  if ((V = U - p1) < 0.0)  return(k2 + floor(U/f2));
+	  /* immediate acceptance region 
+	     R1 = [k1, k2)*[0, f1),  X = k1, ... k2-1 */
+	  if ((W = V / dl) < f1 )  return(k1 + floor(V/f1));
+	  
+	  /* computation of candidate X < k2, and its counterpart Y > k2 */
+	  /* either squeeze-acceptance of X or acceptance-rejection of Y */
+	  Dk = floor(dl * RUNI) + 1.0;
+	  if (W <= f2 - Dk * (f2 - f2/r2))
+	    {                                        /* quick accept of  */
+	      return(k2 - Dk);                       /* X = k2 - Dk      */
+	    }
+	  if ((V = f2 + f2 - W) < 1.0)
+	    {                                        /* quick reject of Y*/
+	      Y = k2 + Dk;
+	      if (V <= f2 + Dk * (1.0 - f2)/(dl + 1.0))
+		{                                    /* quick accept of  */
+		  return(Y);                         /* Y = k2 + Dk      */
+		}
+	      if (V <= f(Y, l_my, c_pm))  return(Y); /* final accept of Y*/
+	    }
+	  X = k2 - Dk;
+	}
+      else if (U < p4)
+	{                                            /* centre right     */
+	  /*  immediate acceptance region 
+	      R3 = [m, k4+1)*[0, f4), X = m, ... k4    */
+	  if ((V = U - p3) < 0.0)  return(k4 - floor((U - p2)/f4));
+	  /* immediate acceptance region 
+	     R4 = [k4+1, k5+1)*[0, f5)                */
+	  if ((W = V / dr) < f5 )  return(k5 - floor(V/f5));
+	  
+	  /* computation of candidate X > k4, and its counterpart Y < k4 */
+	  /* either squeeze-acceptance of X or acceptance-rejection of Y */
+	  Dk = floor(dr * RUNI) + 1.0;
+	  if (W <= f4 - Dk * (f4 - f4*r4))
+	    {                                        /* quick accept of  */
+	      return(k4 + Dk);                       /* X = k4 + Dk      */
+	    }
+	  if ((V = f4 + f4 - W) < 1.0)
+	    {                                        /* quick reject of Y*/
+	      Y = k4 - Dk;
+	      if (V <= f4 + Dk * (1.0 - f4)/ dr)
+		{                                    /* quick accept of  */
+		  return(Y);                         /* Y = k4 - Dk      */
+		}
+	      if (V <= f(Y, l_my, c_pm))  return(Y); /* final accept of Y*/
+	    }
+	  X = k4 + Dk;
+	}
+      else
+	{
+	  W = RUNI;
+	  if (U < p5)
+	    {                                        /* expon. tail left */
+	      Dk = floor(1.0 - log(W)/ll);
+	      if ((X = k1 - Dk) < 0L)  continue;     /* 0 <= X <= k1 - 1 */
+	      W *= (U - p4) * ll;                    /* W -- U(0, h(x))  */
+	      if (W <= f1 - Dk * (f1 - f1/r1))  
+		return(X);                           /* quick accept of X*/
+	    }
+	  else
+	    {                                        /* expon. tail right*/
+	      Dk = floor(1.0 - log(W)/lr);
+	      X  = k5 + Dk;                          /* X >= k5 + 1      */
+	      W *= (U - p5) * lr;                    /* W -- U(0, h(x))  */
+	      if (W <= f5 - Dk * (f5 - f5*r5))  
+		return(X);                           /* quick accept of X*/
+	    }
+	}
+      
+      /* acceptance-rejection test of candidate X from the original area */
+      /* test, whether  W <= f(k),    with  W = U*h(x)  and  U -- U(0, 1)*/
+      /* log f(X) = (X - m)*log(my) - log X! + log m!                    */
+      if (log(W) <= X * l_my - flogfak(X) - c_pm)  return(X);
+    }
+}
+/* ---- pprsc.c end ------ */
+
+
+/* The remainder of the file is by Paul Kienzle */
+
+/* Given uniform u, find x such that CDF(L,x)==u.  Return x. */
+static void 
+poisson_cdf_lookup(double lambda, double *p, size_t n)
+{
+  /* Table size is predicated on the maximum value of lambda
+   * we want to store in the table, and the maximum value of
+   * returned by the uniform random number generator on [0,1).
+   * With lambda==10 and u_max = 1 - 1/(2^32+1), we
+   * have poisson_pdf(lambda,36) < 1-u_max.  If instead our
+   * generator uses more bits of mantissa or returns a value
+   * in the range [0,1], then for lambda==10 we need a table 
+   * size of 46 instead.  For long doubles, the table size 
+   * will need to be longer still.  */
+#define TABLESIZE 46
+  double t[TABLESIZE];
+  
+  /* Precompute the table for the u up to and including 0.458.
+   * We will almost certainly need it. */
+  int intlambda = (int)floor(lambda);
+  double P;
+  int tableidx;
+  size_t i = n;
+  
+  t[0] = P = exp(-lambda);
+  for (tableidx = 1; tableidx <= intlambda; tableidx++) {
+    P = P*lambda/(double)tableidx;
+    t[tableidx] = t[tableidx-1] + P;
+  }
+
+  while (i-- > 0) {
+    double u = RUNI;
+    
+    /* If u > 0.458 we know we can jump to floor(lambda) before
+     * comparing (this observation is based on Stadlober's winrand
+     * code). For lambda >= 1, this will be a win.  Lambda < 1
+     * is already fast, so adding an extra comparison is not a
+     * problem. */
+    int k = (u > 0.458 ? intlambda : 0);
+
+    /* We aren't using a for loop here because when we find the
+     * right k we want to jump to the next iteration of the
+     * outer loop, and the continue statement will only work for 
+     * the inner loop. */
+  nextk:
+    if ( u <= t[k] ) {
+      p[i] = (double) k;
+      continue;
+    }
+    if (++k < tableidx) goto nextk;
+    
+    /* We only need high values of the table very rarely so we 
+     * don't automatically compute the entire table. */
+    while (tableidx < TABLESIZE) {
+      P = P*lambda/(double)tableidx;
+      t[tableidx] = t[tableidx-1] + P;
+      /* Make sure we converge to 1.0 just in case u is uniform
+       * on [0,1] rather than [0,1). */
+      if (t[tableidx] == t[tableidx-1]) t[tableidx] = 1.0;
+      tableidx++;
+      if (u <= t[tableidx-1]) break;
+    }
+    
+    /* We are assuming that the table size is big enough here.
+     * This should be true even if RUNI is returning values in
+     * the range [0,1] rather than [0,1).
+     */
+    p[i] = (double)(tableidx-1);
+  }
+}
+
+/* From Press, et al., Numerical Recipes */
+static void
+poisson_rejection (double lambda, double *p, size_t n)
+{
+  double sq = sqrt(2.0*lambda);
+  double alxm = log(lambda);
+  double g = lambda*alxm - LGAMMA(lambda+1.0);
+  size_t i;
+  
+  for (i = 0; i < n; i++) 
+    {
+      double y, em, t;
+      do {
+	do {
+	  y = tan(M_PI*RUNI);
+	  em = sq * y + lambda;
+	} while (em < 0.0);
+	em = floor(em);
+	t = 0.9*(1.0+y*y)*exp(em*alxm-flogfak(em)-g);
+      } while (RUNI > t);
+      p[i] = em;
+    }
+}
+
+/* The cutoff of L <= 1e8 in the following two functions before using 
+ * the normal approximation is based on:
+ *   > L=1e8; x=floor(linspace(0,2*L,1000));
+ *   > max(abs(normal_pdf(x,L,L)-poisson_pdf(x,L)))
+ *   ans =  1.1376e-28
+ * For L=1e7, the max is around 1e-9, which is within the step size of RUNI.
+ * For L>1e10 the pprsc function breaks down, as I saw from the histogram
+ * of a large sample, so 1e8 is both small enough and large enough. */
+
+/* Generate a set of poisson numbers with the same distribution */
+void 
+oct_fill_randp (double L, octave_idx_type n, double *p)
+{
+  octave_idx_type i;
+  if (L < 0.0 || INFINITE(L)) 
+    {
+      for (i=0; i<n; i++) 
+	p[i] = NAN;
+    } 
+  else if (L <= 10.0) 
+    {
+      poisson_cdf_lookup(L, p, n);
+    } 
+  else if (L <= 1e8) 
+    {
+      for (i=0; i<n; i++) 
+	p[i] = pprsc(L);
+    } 
+  else 
+    {
+      /* normal approximation: from Phys. Rev. D (1994) v50 p1284 */
+      const double sqrtL = sqrt(L);
+      for (i = 0; i < L; i++) 
+	{
+	  p[i] = floor(RNOR*sqrtL + L + 0.5);
+	  if (p[i] < 0.0) 
+	    p[i] = 0.0; /* will probably never happen */
+	}
+    }
+}
+
+/* Generate one poisson variate */
+double 
+oct_randp (double L)
+{
+  double ret;
+  if (L < 0.0) ret = NAN;
+  else if (L <= 12.0) {
+    /* From Press, et al. Numerical recipes */
+    double g = exp(-L);
+    int em = -1;
+    double t = 1.0;
+    do {
+      ++em;
+      t *= RUNI;
+    } while (t > g);
+    ret = em;
+  } else if (L <= 1e8) {
+    /* numerical recipes */
+    poisson_rejection(L, &ret, 1);
+  } else if (INFINITE(L)) {
+    /* XXX FIXME XXX R uses NaN, but the normal approx. suggests that as
+     * limit should be inf. Which is correct? */
+    ret = NAN;
+  } else {
+    /* normal approximation: from Phys. Rev. D (1994) v50 p1284 */
+    ret = floor(RNOR*sqrt(L) + L + 0.5);
+    if (ret < 0.0) ret = 0.0; /* will probably never happen */
+  }
+  return ret;
+}
+
+/*
+;;; Local Variables: ***
+;;; mode: C ***
+;;; End: ***
+*/