diff libcruft/lapack/dlatbs.f @ 5164:57077d0ddc8e

[project @ 2005-02-25 19:55:24 by jwe]
author jwe
date Fri, 25 Feb 2005 19:55:28 +0000
parents
children 68db500cb558
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libcruft/lapack/dlatbs.f	Fri Feb 25 19:55:28 2005 +0000
@@ -0,0 +1,724 @@
+      SUBROUTINE DLATBS( UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X,
+     $                   SCALE, CNORM, INFO )
+*
+*  -- LAPACK auxiliary routine (version 3.0) --
+*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+*     Courant Institute, Argonne National Lab, and Rice University
+*     June 30, 1992
+*
+*     .. Scalar Arguments ..
+      CHARACTER          DIAG, NORMIN, TRANS, UPLO
+      INTEGER            INFO, KD, LDAB, N
+      DOUBLE PRECISION   SCALE
+*     ..
+*     .. Array Arguments ..
+      DOUBLE PRECISION   AB( LDAB, * ), CNORM( * ), X( * )
+*     ..
+*
+*  Purpose
+*  =======
+*
+*  DLATBS solves one of the triangular systems
+*
+*     A *x = s*b  or  A'*x = s*b
+*
+*  with scaling to prevent overflow, where A is an upper or lower
+*  triangular band matrix.  Here A' denotes the transpose of A, x and b
+*  are n-element vectors, and s is a scaling factor, usually less than
+*  or equal to 1, chosen so that the components of x will be less than
+*  the overflow threshold.  If the unscaled problem will not cause
+*  overflow, the Level 2 BLAS routine DTBSV is called.  If the matrix A
+*  is singular (A(j,j) = 0 for some j), then s is set to 0 and a
+*  non-trivial solution to A*x = 0 is returned.
+*
+*  Arguments
+*  =========
+*
+*  UPLO    (input) CHARACTER*1
+*          Specifies whether the matrix A is upper or lower triangular.
+*          = 'U':  Upper triangular
+*          = 'L':  Lower triangular
+*
+*  TRANS   (input) CHARACTER*1
+*          Specifies the operation applied to A.
+*          = 'N':  Solve A * x = s*b  (No transpose)
+*          = 'T':  Solve A'* x = s*b  (Transpose)
+*          = 'C':  Solve A'* x = s*b  (Conjugate transpose = Transpose)
+*
+*  DIAG    (input) CHARACTER*1
+*          Specifies whether or not the matrix A is unit triangular.
+*          = 'N':  Non-unit triangular
+*          = 'U':  Unit triangular
+*
+*  NORMIN  (input) CHARACTER*1
+*          Specifies whether CNORM has been set or not.
+*          = 'Y':  CNORM contains the column norms on entry
+*          = 'N':  CNORM is not set on entry.  On exit, the norms will
+*                  be computed and stored in CNORM.
+*
+*  N       (input) INTEGER
+*          The order of the matrix A.  N >= 0.
+*
+*  KD      (input) INTEGER
+*          The number of subdiagonals or superdiagonals in the
+*          triangular matrix A.  KD >= 0.
+*
+*  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)
+*          The upper or lower triangular band matrix A, stored in the
+*          first KD+1 rows of the array. The j-th column of A is stored
+*          in the j-th column of the array AB as follows:
+*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
+*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
+*
+*  LDAB    (input) INTEGER
+*          The leading dimension of the array AB.  LDAB >= KD+1.
+*
+*  X       (input/output) DOUBLE PRECISION array, dimension (N)
+*          On entry, the right hand side b of the triangular system.
+*          On exit, X is overwritten by the solution vector x.
+*
+*  SCALE   (output) DOUBLE PRECISION
+*          The scaling factor s for the triangular system
+*             A * x = s*b  or  A'* x = s*b.
+*          If SCALE = 0, the matrix A is singular or badly scaled, and
+*          the vector x is an exact or approximate solution to A*x = 0.
+*
+*  CNORM   (input or output) DOUBLE PRECISION array, dimension (N)
+*
+*          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
+*          contains the norm of the off-diagonal part of the j-th column
+*          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
+*          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
+*          must be greater than or equal to the 1-norm.
+*
+*          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
+*          returns the 1-norm of the offdiagonal part of the j-th column
+*          of A.
+*
+*  INFO    (output) INTEGER
+*          = 0:  successful exit
+*          < 0:  if INFO = -k, the k-th argument had an illegal value
+*
+*  Further Details
+*  ======= =======
+*
+*  A rough bound on x is computed; if that is less than overflow, DTBSV
+*  is called, otherwise, specific code is used which checks for possible
+*  overflow or divide-by-zero at every operation.
+*
+*  A columnwise scheme is used for solving A*x = b.  The basic algorithm
+*  if A is lower triangular is
+*
+*       x[1:n] := b[1:n]
+*       for j = 1, ..., n
+*            x(j) := x(j) / A(j,j)
+*            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
+*       end
+*
+*  Define bounds on the components of x after j iterations of the loop:
+*     M(j) = bound on x[1:j]
+*     G(j) = bound on x[j+1:n]
+*  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
+*
+*  Then for iteration j+1 we have
+*     M(j+1) <= G(j) / | A(j+1,j+1) |
+*     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
+*            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
+*
+*  where CNORM(j+1) is greater than or equal to the infinity-norm of
+*  column j+1 of A, not counting the diagonal.  Hence
+*
+*     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
+*                  1<=i<=j
+*  and
+*
+*     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
+*                                   1<=i< j
+*
+*  Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTBSV if the
+*  reciprocal of the largest M(j), j=1,..,n, is larger than
+*  max(underflow, 1/overflow).
+*
+*  The bound on x(j) is also used to determine when a step in the
+*  columnwise method can be performed without fear of overflow.  If
+*  the computed bound is greater than a large constant, x is scaled to
+*  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
+*  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
+*
+*  Similarly, a row-wise scheme is used to solve A'*x = b.  The basic
+*  algorithm for A upper triangular is
+*
+*       for j = 1, ..., n
+*            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
+*       end
+*
+*  We simultaneously compute two bounds
+*       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
+*       M(j) = bound on x(i), 1<=i<=j
+*
+*  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
+*  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
+*  Then the bound on x(j) is
+*
+*       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
+*
+*            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
+*                      1<=i<=j
+*
+*  and we can safely call DTBSV if 1/M(n) and 1/G(n) are both greater
+*  than max(underflow, 1/overflow).
+*
+*  =====================================================================
+*
+*     .. Parameters ..
+      DOUBLE PRECISION   ZERO, HALF, ONE
+      PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
+*     ..
+*     .. Local Scalars ..
+      LOGICAL            NOTRAN, NOUNIT, UPPER
+      INTEGER            I, IMAX, J, JFIRST, JINC, JLAST, JLEN, MAIND
+      DOUBLE PRECISION   BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
+     $                   TMAX, TSCAL, USCAL, XBND, XJ, XMAX
+*     ..
+*     .. External Functions ..
+      LOGICAL            LSAME
+      INTEGER            IDAMAX
+      DOUBLE PRECISION   DASUM, DDOT, DLAMCH
+      EXTERNAL           LSAME, IDAMAX, DASUM, DDOT, DLAMCH
+*     ..
+*     .. External Subroutines ..
+      EXTERNAL           DAXPY, DSCAL, DTBSV, XERBLA
+*     ..
+*     .. Intrinsic Functions ..
+      INTRINSIC          ABS, MAX, MIN
+*     ..
+*     .. Executable Statements ..
+*
+      INFO = 0
+      UPPER = LSAME( UPLO, 'U' )
+      NOTRAN = LSAME( TRANS, 'N' )
+      NOUNIT = LSAME( DIAG, 'N' )
+*
+*     Test the input parameters.
+*
+      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+         INFO = -1
+      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
+     $         LSAME( TRANS, 'C' ) ) THEN
+         INFO = -2
+      ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
+         INFO = -3
+      ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
+     $         LSAME( NORMIN, 'N' ) ) THEN
+         INFO = -4
+      ELSE IF( N.LT.0 ) THEN
+         INFO = -5
+      ELSE IF( KD.LT.0 ) THEN
+         INFO = -6
+      ELSE IF( LDAB.LT.KD+1 ) THEN
+         INFO = -8
+      END IF
+      IF( INFO.NE.0 ) THEN
+         CALL XERBLA( 'DLATBS', -INFO )
+         RETURN
+      END IF
+*
+*     Quick return if possible
+*
+      IF( N.EQ.0 )
+     $   RETURN
+*
+*     Determine machine dependent parameters to control overflow.
+*
+      SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
+      BIGNUM = ONE / SMLNUM
+      SCALE = ONE
+*
+      IF( LSAME( NORMIN, 'N' ) ) THEN
+*
+*        Compute the 1-norm of each column, not including the diagonal.
+*
+         IF( UPPER ) THEN
+*
+*           A is upper triangular.
+*
+            DO 10 J = 1, N
+               JLEN = MIN( KD, J-1 )
+               CNORM( J ) = DASUM( JLEN, AB( KD+1-JLEN, J ), 1 )
+   10       CONTINUE
+         ELSE
+*
+*           A is lower triangular.
+*
+            DO 20 J = 1, N
+               JLEN = MIN( KD, N-J )
+               IF( JLEN.GT.0 ) THEN
+                  CNORM( J ) = DASUM( JLEN, AB( 2, J ), 1 )
+               ELSE
+                  CNORM( J ) = ZERO
+               END IF
+   20       CONTINUE
+         END IF
+      END IF
+*
+*     Scale the column norms by TSCAL if the maximum element in CNORM is
+*     greater than BIGNUM.
+*
+      IMAX = IDAMAX( N, CNORM, 1 )
+      TMAX = CNORM( IMAX )
+      IF( TMAX.LE.BIGNUM ) THEN
+         TSCAL = ONE
+      ELSE
+         TSCAL = ONE / ( SMLNUM*TMAX )
+         CALL DSCAL( N, TSCAL, CNORM, 1 )
+      END IF
+*
+*     Compute a bound on the computed solution vector to see if the
+*     Level 2 BLAS routine DTBSV can be used.
+*
+      J = IDAMAX( N, X, 1 )
+      XMAX = ABS( X( J ) )
+      XBND = XMAX
+      IF( NOTRAN ) THEN
+*
+*        Compute the growth in A * x = b.
+*
+         IF( UPPER ) THEN
+            JFIRST = N
+            JLAST = 1
+            JINC = -1
+            MAIND = KD + 1
+         ELSE
+            JFIRST = 1
+            JLAST = N
+            JINC = 1
+            MAIND = 1
+         END IF
+*
+         IF( TSCAL.NE.ONE ) THEN
+            GROW = ZERO
+            GO TO 50
+         END IF
+*
+         IF( NOUNIT ) THEN
+*
+*           A is non-unit triangular.
+*
+*           Compute GROW = 1/G(j) and XBND = 1/M(j).
+*           Initially, G(0) = max{x(i), i=1,...,n}.
+*
+            GROW = ONE / MAX( XBND, SMLNUM )
+            XBND = GROW
+            DO 30 J = JFIRST, JLAST, JINC
+*
+*              Exit the loop if the growth factor is too small.
+*
+               IF( GROW.LE.SMLNUM )
+     $            GO TO 50
+*
+*              M(j) = G(j-1) / abs(A(j,j))
+*
+               TJJ = ABS( AB( MAIND, J ) )
+               XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
+               IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
+*
+*                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
+*
+                  GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
+               ELSE
+*
+*                 G(j) could overflow, set GROW to 0.
+*
+                  GROW = ZERO
+               END IF
+   30       CONTINUE
+            GROW = XBND
+         ELSE
+*
+*           A is unit triangular.
+*
+*           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
+*
+            GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
+            DO 40 J = JFIRST, JLAST, JINC
+*
+*              Exit the loop if the growth factor is too small.
+*
+               IF( GROW.LE.SMLNUM )
+     $            GO TO 50
+*
+*              G(j) = G(j-1)*( 1 + CNORM(j) )
+*
+               GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
+   40       CONTINUE
+         END IF
+   50    CONTINUE
+*
+      ELSE
+*
+*        Compute the growth in A' * x = b.
+*
+         IF( UPPER ) THEN
+            JFIRST = 1
+            JLAST = N
+            JINC = 1
+            MAIND = KD + 1
+         ELSE
+            JFIRST = N
+            JLAST = 1
+            JINC = -1
+            MAIND = 1
+         END IF
+*
+         IF( TSCAL.NE.ONE ) THEN
+            GROW = ZERO
+            GO TO 80
+         END IF
+*
+         IF( NOUNIT ) THEN
+*
+*           A is non-unit triangular.
+*
+*           Compute GROW = 1/G(j) and XBND = 1/M(j).
+*           Initially, M(0) = max{x(i), i=1,...,n}.
+*
+            GROW = ONE / MAX( XBND, SMLNUM )
+            XBND = GROW
+            DO 60 J = JFIRST, JLAST, JINC
+*
+*              Exit the loop if the growth factor is too small.
+*
+               IF( GROW.LE.SMLNUM )
+     $            GO TO 80
+*
+*              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
+*
+               XJ = ONE + CNORM( J )
+               GROW = MIN( GROW, XBND / XJ )
+*
+*              M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
+*
+               TJJ = ABS( AB( MAIND, J ) )
+               IF( XJ.GT.TJJ )
+     $            XBND = XBND*( TJJ / XJ )
+   60       CONTINUE
+            GROW = MIN( GROW, XBND )
+         ELSE
+*
+*           A is unit triangular.
+*
+*           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
+*
+            GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
+            DO 70 J = JFIRST, JLAST, JINC
+*
+*              Exit the loop if the growth factor is too small.
+*
+               IF( GROW.LE.SMLNUM )
+     $            GO TO 80
+*
+*              G(j) = ( 1 + CNORM(j) )*G(j-1)
+*
+               XJ = ONE + CNORM( J )
+               GROW = GROW / XJ
+   70       CONTINUE
+         END IF
+   80    CONTINUE
+      END IF
+*
+      IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
+*
+*        Use the Level 2 BLAS solve if the reciprocal of the bound on
+*        elements of X is not too small.
+*
+         CALL DTBSV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, X, 1 )
+      ELSE
+*
+*        Use a Level 1 BLAS solve, scaling intermediate results.
+*
+         IF( XMAX.GT.BIGNUM ) THEN
+*
+*           Scale X so that its components are less than or equal to
+*           BIGNUM in absolute value.
+*
+            SCALE = BIGNUM / XMAX
+            CALL DSCAL( N, SCALE, X, 1 )
+            XMAX = BIGNUM
+         END IF
+*
+         IF( NOTRAN ) THEN
+*
+*           Solve A * x = b
+*
+            DO 110 J = JFIRST, JLAST, JINC
+*
+*              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
+*
+               XJ = ABS( X( J ) )
+               IF( NOUNIT ) THEN
+                  TJJS = AB( MAIND, J )*TSCAL
+               ELSE
+                  TJJS = TSCAL
+                  IF( TSCAL.EQ.ONE )
+     $               GO TO 100
+               END IF
+               TJJ = ABS( TJJS )
+               IF( TJJ.GT.SMLNUM ) THEN
+*
+*                    abs(A(j,j)) > SMLNUM:
+*
+                  IF( TJJ.LT.ONE ) THEN
+                     IF( XJ.GT.TJJ*BIGNUM ) THEN
+*
+*                          Scale x by 1/b(j).
+*
+                        REC = ONE / XJ
+                        CALL DSCAL( N, REC, X, 1 )
+                        SCALE = SCALE*REC
+                        XMAX = XMAX*REC
+                     END IF
+                  END IF
+                  X( J ) = X( J ) / TJJS
+                  XJ = ABS( X( J ) )
+               ELSE IF( TJJ.GT.ZERO ) THEN
+*
+*                    0 < abs(A(j,j)) <= SMLNUM:
+*
+                  IF( XJ.GT.TJJ*BIGNUM ) THEN
+*
+*                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
+*                       to avoid overflow when dividing by A(j,j).
+*
+                     REC = ( TJJ*BIGNUM ) / XJ
+                     IF( CNORM( J ).GT.ONE ) THEN
+*
+*                          Scale by 1/CNORM(j) to avoid overflow when
+*                          multiplying x(j) times column j.
+*
+                        REC = REC / CNORM( J )
+                     END IF
+                     CALL DSCAL( N, REC, X, 1 )
+                     SCALE = SCALE*REC
+                     XMAX = XMAX*REC
+                  END IF
+                  X( J ) = X( J ) / TJJS
+                  XJ = ABS( X( J ) )
+               ELSE
+*
+*                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
+*                    scale = 0, and compute a solution to A*x = 0.
+*
+                  DO 90 I = 1, N
+                     X( I ) = ZERO
+   90             CONTINUE
+                  X( J ) = ONE
+                  XJ = ONE
+                  SCALE = ZERO
+                  XMAX = ZERO
+               END IF
+  100          CONTINUE
+*
+*              Scale x if necessary to avoid overflow when adding a
+*              multiple of column j of A.
+*
+               IF( XJ.GT.ONE ) THEN
+                  REC = ONE / XJ
+                  IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
+*
+*                    Scale x by 1/(2*abs(x(j))).
+*
+                     REC = REC*HALF
+                     CALL DSCAL( N, REC, X, 1 )
+                     SCALE = SCALE*REC
+                  END IF
+               ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
+*
+*                 Scale x by 1/2.
+*
+                  CALL DSCAL( N, HALF, X, 1 )
+                  SCALE = SCALE*HALF
+               END IF
+*
+               IF( UPPER ) THEN
+                  IF( J.GT.1 ) THEN
+*
+*                    Compute the update
+*                       x(max(1,j-kd):j-1) := x(max(1,j-kd):j-1) -
+*                                             x(j)* A(max(1,j-kd):j-1,j)
+*
+                     JLEN = MIN( KD, J-1 )
+                     CALL DAXPY( JLEN, -X( J )*TSCAL,
+     $                           AB( KD+1-JLEN, J ), 1, X( J-JLEN ), 1 )
+                     I = IDAMAX( J-1, X, 1 )
+                     XMAX = ABS( X( I ) )
+                  END IF
+               ELSE IF( J.LT.N ) THEN
+*
+*                 Compute the update
+*                    x(j+1:min(j+kd,n)) := x(j+1:min(j+kd,n)) -
+*                                          x(j) * A(j+1:min(j+kd,n),j)
+*
+                  JLEN = MIN( KD, N-J )
+                  IF( JLEN.GT.0 )
+     $               CALL DAXPY( JLEN, -X( J )*TSCAL, AB( 2, J ), 1,
+     $                           X( J+1 ), 1 )
+                  I = J + IDAMAX( N-J, X( J+1 ), 1 )
+                  XMAX = ABS( X( I ) )
+               END IF
+  110       CONTINUE
+*
+         ELSE
+*
+*           Solve A' * x = b
+*
+            DO 160 J = JFIRST, JLAST, JINC
+*
+*              Compute x(j) = b(j) - sum A(k,j)*x(k).
+*                                    k<>j
+*
+               XJ = ABS( X( J ) )
+               USCAL = TSCAL
+               REC = ONE / MAX( XMAX, ONE )
+               IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
+*
+*                 If x(j) could overflow, scale x by 1/(2*XMAX).
+*
+                  REC = REC*HALF
+                  IF( NOUNIT ) THEN
+                     TJJS = AB( MAIND, J )*TSCAL
+                  ELSE
+                     TJJS = TSCAL
+                  END IF
+                  TJJ = ABS( TJJS )
+                  IF( TJJ.GT.ONE ) THEN
+*
+*                       Divide by A(j,j) when scaling x if A(j,j) > 1.
+*
+                     REC = MIN( ONE, REC*TJJ )
+                     USCAL = USCAL / TJJS
+                  END IF
+                  IF( REC.LT.ONE ) THEN
+                     CALL DSCAL( N, REC, X, 1 )
+                     SCALE = SCALE*REC
+                     XMAX = XMAX*REC
+                  END IF
+               END IF
+*
+               SUMJ = ZERO
+               IF( USCAL.EQ.ONE ) THEN
+*
+*                 If the scaling needed for A in the dot product is 1,
+*                 call DDOT to perform the dot product.
+*
+                  IF( UPPER ) THEN
+                     JLEN = MIN( KD, J-1 )
+                     SUMJ = DDOT( JLEN, AB( KD+1-JLEN, J ), 1,
+     $                      X( J-JLEN ), 1 )
+                  ELSE
+                     JLEN = MIN( KD, N-J )
+                     IF( JLEN.GT.0 )
+     $                  SUMJ = DDOT( JLEN, AB( 2, J ), 1, X( J+1 ), 1 )
+                  END IF
+               ELSE
+*
+*                 Otherwise, use in-line code for the dot product.
+*
+                  IF( UPPER ) THEN
+                     JLEN = MIN( KD, J-1 )
+                     DO 120 I = 1, JLEN
+                        SUMJ = SUMJ + ( AB( KD+I-JLEN, J )*USCAL )*
+     $                         X( J-JLEN-1+I )
+  120                CONTINUE
+                  ELSE
+                     JLEN = MIN( KD, N-J )
+                     DO 130 I = 1, JLEN
+                        SUMJ = SUMJ + ( AB( I+1, J )*USCAL )*X( J+I )
+  130                CONTINUE
+                  END IF
+               END IF
+*
+               IF( USCAL.EQ.TSCAL ) THEN
+*
+*                 Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
+*                 was not used to scale the dotproduct.
+*
+                  X( J ) = X( J ) - SUMJ
+                  XJ = ABS( X( J ) )
+                  IF( NOUNIT ) THEN
+*
+*                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
+*
+                     TJJS = AB( MAIND, J )*TSCAL
+                  ELSE
+                     TJJS = TSCAL
+                     IF( TSCAL.EQ.ONE )
+     $                  GO TO 150
+                  END IF
+                  TJJ = ABS( TJJS )
+                  IF( TJJ.GT.SMLNUM ) THEN
+*
+*                       abs(A(j,j)) > SMLNUM:
+*
+                     IF( TJJ.LT.ONE ) THEN
+                        IF( XJ.GT.TJJ*BIGNUM ) THEN
+*
+*                             Scale X by 1/abs(x(j)).
+*
+                           REC = ONE / XJ
+                           CALL DSCAL( N, REC, X, 1 )
+                           SCALE = SCALE*REC
+                           XMAX = XMAX*REC
+                        END IF
+                     END IF
+                     X( J ) = X( J ) / TJJS
+                  ELSE IF( TJJ.GT.ZERO ) THEN
+*
+*                       0 < abs(A(j,j)) <= SMLNUM:
+*
+                     IF( XJ.GT.TJJ*BIGNUM ) THEN
+*
+*                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
+*
+                        REC = ( TJJ*BIGNUM ) / XJ
+                        CALL DSCAL( N, REC, X, 1 )
+                        SCALE = SCALE*REC
+                        XMAX = XMAX*REC
+                     END IF
+                     X( J ) = X( J ) / TJJS
+                  ELSE
+*
+*                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
+*                       scale = 0, and compute a solution to A'*x = 0.
+*
+                     DO 140 I = 1, N
+                        X( I ) = ZERO
+  140                CONTINUE
+                     X( J ) = ONE
+                     SCALE = ZERO
+                     XMAX = ZERO
+                  END IF
+  150             CONTINUE
+               ELSE
+*
+*                 Compute x(j) := x(j) / A(j,j) - sumj if the dot
+*                 product has already been divided by 1/A(j,j).
+*
+                  X( J ) = X( J ) / TJJS - SUMJ
+               END IF
+               XMAX = MAX( XMAX, ABS( X( J ) ) )
+  160       CONTINUE
+         END IF
+         SCALE = SCALE / TSCAL
+      END IF
+*
+*     Scale the column norms by 1/TSCAL for return.
+*
+      IF( TSCAL.NE.ONE ) THEN
+         CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
+      END IF
+*
+      RETURN
+*
+*     End of DLATBS
+*
+      END