diff src/DLD-FUNCTIONS/sparse.cc @ 5164:57077d0ddc8e

[project @ 2005-02-25 19:55:24 by jwe]
author jwe
date Fri, 25 Feb 2005 19:55:28 +0000
parents
children 23b37da9fd5b
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/DLD-FUNCTIONS/sparse.cc	Fri Feb 25 19:55:28 2005 +0000
@@ -0,0 +1,1369 @@
+/*
+
+Copyright (C) 2004 David Bateman
+Copyright (C) 1998-2004 Andy Adler
+
+Octave is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 2, or (at your option) any
+later version.
+
+Octave is distributed in the hope that it will be useful, but WITHOUT
+ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; see the file COPYING.  If not, write to the Free
+Software Foundation, 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
+
+*/
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#include <cstdlib>
+#include <string>
+
+#include "variables.h"
+#include "utils.h"
+#include "pager.h"
+#include "defun-dld.h"
+#include "gripes.h"
+#include "quit.h"
+
+#include "ov-re-sparse.h"
+#include "ov-cx-sparse.h"
+#include "ov-bool-sparse.h"
+
+static bool
+is_sparse (const octave_value& arg)
+{
+  return (arg.class_name () == "sparse");
+}
+
+DEFUN_DLD (issparse, args, ,
+  "-*- texinfo -*-\n\
+@deftypefn {Loadable Function} {} issparse (@var{expr})\n\
+Return 1 if the value of the expression @var{expr} is a sparse matrix.\n\
+@end deftypefn") 
+{
+   if (args.length() != 1) 
+     {
+       print_usage("issparse");
+       return octave_value ();
+     }
+   else 
+     return octave_value (is_sparse (args(0)));
+}
+
+DEFUN_DLD (sparse, args, ,
+    "-*- texinfo -*-\n\
+@deftypefn {Loadable Function} {@var{sparse_val} =} sparse (...)\n\
+SPARSE: create a sparse matrix\n\
+\n\
+sparse can be called in the following ways:\n\
+\n\
+@enumerate\n\
+@item @var{S} = sparse(@var{A})  where @var{A} is a full matrix\n\
+\n\
+@item @var{S} = sparse(@var{A},1)  where @var{A} is a full matrix, result\n\
+is forced back to a full matrix is resulting matrix is sparse\n\
+\n\
+@item @var{S} = sparse(@var{i},@var{j},@var{s},@var{m},@var{n},@var{nzmax})  where\n\
+   @itemize @w \n\
+@var{i},@var{j}   are integer index vectors (1 x nnz) @* \n\
+@var{s}     is the vector of real or complex entries (1 x nnz) @* \n\
+@var{m},@var{n}   are the scalar dimentions of S @* \n\
+@var{nzmax} is ignored (here for compatability with Matlab) @* \n\
+\n\
+        if multiple values are specified with the same @var{i},@var{j}\n\
+        position, the corresponding values in @var{s} will be added\n\
+   @end itemize\n\
+\n\
+@item The following usages are equivalent to (2) above:\n\
+   @itemize @w \n\
+@var{S} = sparse(@var{i},@var{j},@var{s},@var{m},@var{n})@*\n\
+@var{S} = sparse(@var{i},@var{j},@var{s},@var{m},@var{n},'summation')@*\n\
+@var{S} = sparse(@var{i},@var{j},@var{s},@var{m},@var{n},'sum')@*\n\
+   @end itemize\n\
+\n\
+@item @var{S} = sparse(@var{i},@var{j},@var{s},@var{m},@var{n},'unique')@*\n\
+\n\
+   @itemize @w \n\
+same as (2) above, except that rather than adding,\n\
+if more than two values are specified for the same @var{i},@var{j}\n\
+position, then the last specified value will be kept\n\
+   @end itemize\n\
+\n\
+@item @var{S}=  sparse(@var{i},@var{j},@var{sv})          uses @var{m}=max(@var{i}), @var{n}=max(@var{j})\n\
+\n\
+@item @var{S}=  sparse(@var{m},@var{n})            does sparse([],[],[],@var{m},@var{n},0)\n\
+\n\
+@var{sv}, and @var{i} or @var{j} may be scalars, in\n\
+which case they are expanded to all have the same length\n\
+@end enumerate\n\
+@seealso{full}\n\
+@end deftypefn")
+{
+   octave_value retval;
+   bool mutate = false;
+
+   // WARNING: This function should always use constructions like
+   //   retval = new octave_sparse_matrix (sm);
+   // To avoid calling the maybe_mutate function. This is the only
+   // function that should not call maybe_mutate, or at least only
+   // in very particular cases.
+
+   int nargin= args.length();
+   if (nargin < 1 || (nargin == 4 && !args(3).is_string ()) || nargin > 6) 
+     {
+       print_usage ("sparse");
+       return retval;
+     }
+
+   bool use_complex = false;
+   bool use_bool = false;
+   if (nargin > 2)
+     {
+       use_complex= args(2).is_complex_type();
+       use_bool = args(2).is_bool_type ();
+     }
+   else
+     {
+       use_complex= args(0).is_complex_type();
+       use_bool = args(0).is_bool_type ();
+     }
+
+   if (nargin == 2 && ! args(0).is_scalar_type() && args(1).is_scalar_type())
+       mutate = (args(1).double_value() != 0.);
+
+   if (nargin == 1 || (nargin == 2 && mutate)) 
+     {
+       octave_value arg = args (0);
+
+       if (is_sparse (arg))
+	 {
+	   if (use_complex) 
+	     {
+	       SparseComplexMatrix sm (((const octave_sparse_complex_matrix&) arg
+					.get_rep ())
+				       .sparse_complex_matrix_value ());
+	       retval = new octave_sparse_complex_matrix (sm);
+	     }
+	   else if (use_bool) 
+	     {
+	       SparseBoolMatrix sm (((const octave_sparse_bool_matrix&) arg
+					.get_rep ())
+				       .sparse_bool_matrix_value ());
+	       retval = new octave_sparse_bool_matrix (sm);
+	     }
+	   else
+	     {
+	       SparseMatrix sm (((const octave_sparse_matrix&) arg
+				 .get_rep ())
+				.sparse_matrix_value ());
+	       retval = new octave_sparse_matrix (sm);
+	     }
+	 }
+       else
+	 {
+	   if (use_complex) 
+	     {
+	       SparseComplexMatrix sm (args (0).complex_matrix_value ());
+	       if (error_state) 
+		 return retval;
+	       retval = new octave_sparse_complex_matrix (sm);
+	     } 
+	   else if (use_bool) 
+	     {
+	       SparseBoolMatrix sm (args (0).bool_matrix_value ());
+	       if (error_state) 
+		 return retval;
+	       retval = new octave_sparse_bool_matrix (sm);
+	     } 
+	   else 
+	     {
+	       SparseMatrix sm (args (0).matrix_value ());
+	       if (error_state) 
+		 return retval;
+	       retval = new octave_sparse_matrix (sm);
+	     }
+	 }
+     }
+   else 
+     {
+       int m = 1, n = 1;
+       if (nargin == 2) 
+	 {
+	   m = args(0).int_value();
+	   n = args(1).int_value();
+	   if (error_state) return retval;
+
+	   if (use_complex) 
+	     retval = new octave_sparse_complex_matrix 
+	       (SparseComplexMatrix (m, n));
+	   else if (use_bool) 
+	     retval = new octave_sparse_bool_matrix 
+	       (SparseBoolMatrix (m, n));
+	   else
+	     retval = new octave_sparse_matrix 
+	       (SparseMatrix (m, n));
+	 }
+       else 
+	 {
+	   if (args(0).is_empty () || args (1).is_empty () 
+	       || args(2).is_empty ())
+	     {
+	       if (nargin > 4)
+		 {
+		   m = args(3).int_value();
+		   n = args(4).int_value();
+		 }
+
+	       if (use_bool)
+		 retval = new octave_sparse_bool_matrix 
+		   (SparseBoolMatrix (m, n));
+	       else
+		 retval = new octave_sparse_matrix (SparseMatrix (m, n));
+	     }
+	   else
+	     {
+// 
+//  I use this clumsy construction so that we can use
+//  any orientation of args
+	       ColumnVector ridxA = ColumnVector (args(0).vector_value 
+					      (false, true));
+	       ColumnVector cidxA = ColumnVector (args(1).vector_value 
+						  (false, true));
+	       ColumnVector coefA;
+	       boolNDArray coefAB;
+	       ComplexColumnVector coefAC;
+	       bool assemble_do_sum = true; // this is the default in matlab6
+
+	       if (use_complex) 
+		 {
+		   if (args(2).is_empty ())
+		     coefAC = ComplexColumnVector (0);
+		   else
+		     coefAC = ComplexColumnVector 
+		       (args(2).complex_vector_value (false, true));
+		 }
+	       else if (use_bool)
+		 {
+		   if (args(2).is_empty ())
+		     coefAB = boolNDArray (dim_vector (1, 0));
+		   else
+		     coefAB = args(2).bool_array_value ();
+		   dim_vector AB_dims = coefAB.dims ();
+		   if (AB_dims.length() > 2 || (AB_dims(0) != 1 && 
+						AB_dims(1) != 1))
+		     error ("sparse: vector arguments required");
+		 }
+	       else 
+		 if (args(2).is_empty ())
+		   coefA = ColumnVector (0);
+		 else
+		   coefA = ColumnVector (args(2).vector_value (false, true));
+
+	       if (error_state)
+		 return retval;
+
+	       // Confirm that i,j,s all have the same number of elements
+	       int ns;
+	       if (use_complex) 
+		 ns = coefAC.length();
+	       else if (use_bool) 
+		 ns = coefAB.length();
+	       else 
+		 ns = coefA.length();
+
+	       int ni = ridxA.length();
+	       int nj = cidxA.length();
+	       int nnz = (ni > nj ? ni : nj);
+	       if ((ns != 1 && ns != nnz) ||
+		   (ni != 1 && ni != nnz) ||
+		   (nj != 1 && nj != nnz)) 
+		 {
+		   error ("sparse i, j and s must have the same length");
+		   return retval;
+		 }
+
+	       if (nargin == 3 || nargin == 4) 
+		 {
+		   m = static_cast<int> (ridxA.max());
+		   n = static_cast<int> (cidxA.max());
+
+		   // if args(3) is not string, then ignore the value
+		   // otherwise check for summation or unique
+		   if (nargin == 4 && args(3).is_string())
+		     {
+		       std::string vv= args(3).string_value();
+		       if (error_state) return retval;
+		       
+		       if ( vv == "summation" ||
+			    vv == "sum" ) 
+			 assemble_do_sum = true;
+		       else
+			 if ( vv == "unique" )
+			   assemble_do_sum = false;
+			 else {
+			   error("sparse repeat flag must be 'sum' or 'unique'");
+			   return retval;
+			 }
+		     }
+		 } 
+	       else 
+		 {
+		   m = args(3).int_value();
+		   n = args(4).int_value();
+		   if (error_state) 
+		     return retval;
+
+		   // if args(5) is not string, then ignore the value
+		   // otherwise check for summation or unique
+		   if (nargin >= 6 && args(5).is_string())
+		     {
+		       std::string vv= args(5).string_value();
+		       if (error_state) return retval;
+		       
+		       if ( vv == "summation" ||
+			    vv == "sum" ) 
+			 assemble_do_sum = true;
+		       else
+			 if ( vv == "unique" )
+			   assemble_do_sum = false;
+			 else {
+			   error("sparse repeat flag must be 'sum' or 'unique'");
+			   return retval;
+			 }
+		     }
+		   
+		 }
+
+	       // Convert indexing to zero-indexing used internally
+	       ridxA -= 1.;
+	       cidxA -= 1.;
+
+	       if (use_complex) 
+		 retval = new octave_sparse_complex_matrix 
+		   (SparseComplexMatrix (coefAC, ridxA, cidxA, m, n, 
+					 assemble_do_sum));
+	       else if (use_bool) 
+		 retval = new octave_sparse_bool_matrix 
+		   (SparseBoolMatrix (coefAB, ridxA, cidxA, m, n, 
+				      assemble_do_sum));
+	       else
+		 retval = new octave_sparse_matrix 
+		   (SparseMatrix (coefA, ridxA, cidxA, m, n, 
+				  assemble_do_sum));
+	     }
+	 }
+     }
+
+   // Only called in very particular cases, not the default case
+   if (mutate)
+     retval.maybe_mutate ();
+
+   return retval;
+}
+
+DEFUN_DLD (full, args, ,
+    "-*- texinfo -*-\n\
+@deftypefn {Loadable Function} {@var{FM} =} full (@var{SM})\n\
+ returns a full storage matrix from a sparse one\n\
+@seealso{sparse}\n\
+@end deftypefn")
+{
+  octave_value retval;
+
+  if (args.length() < 1) {
+     print_usage ("full");
+     return retval;
+  }
+
+  if (args(0).class_name () == "sparse")
+    {
+      if (args(0).type_name () == "sparse matrix") 
+	retval = args(0).matrix_value ();
+      else if (args(0).type_name () == "sparse complex matrix")
+	retval = args(0).complex_matrix_value ();
+      else if (args(0).type_name () == "sparse bool matrix")
+	retval = args(0).bool_matrix_value ();
+    } 
+  else if (args(0).is_real_type())
+    retval = args(0).matrix_value();
+  else if (args(0).is_complex_type())
+    retval = args(0).complex_matrix_value();
+  else
+    gripe_wrong_type_arg ("full", args(0));
+
+  return retval;
+}
+
+DEFUN_DLD (nnz, args, ,
+   "-*- texinfo -*-\n\
+@deftypefn {Loadable Function} {@var{scalar} =} nnz (@var{SM})\n\
+returns number of non zero elements in SM\n\
+@seealso{sparse}\n\
+@end deftypefn")
+{
+  octave_value retval;
+
+  if (args.length() < 1) 
+    {
+      print_usage ("nnz");
+      return retval;
+    }
+
+  if (args(0).class_name () == "sparse") 
+    {
+      // XXX FIXME XXX should nonzero be a method of octave_base_value so that the
+      // below can be replaced with "retval = (double) (args(0).nonzero ());"
+      const octave_value& rep = args(0).get_rep ();
+
+      if (args(0).type_name () == "sparse matrix")
+	retval = (double) ((const octave_sparse_matrix&) rep) .nonzero ();
+      else if (args(0).type_name () == "sparse complex matrix")
+	retval = (double) ((const octave_sparse_complex_matrix&) rep) .nonzero ();
+      else if (args(0).type_name () == "sparse bool matrix")
+	retval = (double) ((const octave_sparse_bool_matrix&) rep) .nonzero ();
+    } 
+  else if (args(0).type_name () == "complex matrix") 
+    {
+      const ComplexMatrix M = args(0).complex_matrix_value();
+      int nnz = 0;
+      for( int j = 0; j < M.cols(); j++)
+	for( int i = 0; i < M.rows(); i++)
+	  if (M (i, j) != 0.) 
+	    nnz++;
+      retval = (double) nnz;
+    } 
+  else if (args(0).type_name () == "matrix") 
+    {
+      const Matrix M = args(0).matrix_value();
+      int nnz = 0;
+      for( int j = 0; j < M.cols(); j++)
+	for( int i = 0; i < M.rows(); i++)
+	  if (M (i, j) != 0.) 
+	    nnz++;
+      retval = (double) nnz;
+    } 
+  else if (args(0).type_name () == "string") 
+    {
+      const charMatrix M = args(0).char_matrix_value();
+      int nnz = 0;
+      for( int j = 0; j < M.cols(); j++)
+	for( int i = 0; i < M.rows(); i++)
+	  if (M (i, j) != 0) 
+	    nnz++;
+      retval = (double) nnz;
+    } 
+  else if (args(0).type_name () == "scalar") 
+      retval = args(0).scalar_value() != 0.0 ? 1.0 : 0.0;
+  else if (args(0).type_name () == "complex scalar")
+    retval = args(0).complex_value() != 0.0 ? 1.0 : 0.0;
+  else
+     gripe_wrong_type_arg ("nnz", args(0));
+
+  return retval;
+}
+
+DEFUN_DLD (nzmax, args, ,
+   "-*- texinfo -*-\n\
+@deftypefn {Loadable Function} {@var{scalar} =} nzmax (@var{SM})\n\
+Returns the amount of storage allocated to the sparse matrix @var{SM}.\n\
+Note that @sc{Octave} tends to crop unused memory at the first oppurtunity\n\
+for sparse objects. There are some cases of user created sparse objects\n\
+where the value returned by @dfn{nzmaz} will not be the same as @dfn{nnz},\n\
+but in general they will give the same result.\n\
+@seealso{sparse, spalloc}\n\
+@end deftypefn")
+{
+  octave_value retval;
+
+  if (args.length() < 1) 
+    {
+      print_usage ("nzmax");
+      return retval;
+    }
+
+  if (args(0).class_name () == "sparse") 
+    {
+      // XXX FIXME XXX should nnz be a method of octave_base_value so that the
+      // below can be replaced with "retval = (double) (args(0).nz ());"
+      const octave_value& rep = args(0).get_rep ();
+
+      if (args(0).type_name () == "sparse matrix")
+	retval = (double) ((const octave_sparse_matrix&) rep) .nnz ();
+      else if (args(0).type_name () == "sparse complex matrix")
+	retval = (double) ((const octave_sparse_complex_matrix&) rep) .nnz ();
+      else if (args(0).type_name () == "sparse bool matrix")
+	retval = (double) ((const octave_sparse_bool_matrix&) rep) .nnz ();
+    }
+  else
+    error ("nzmax: argument must be a sparse matrix");
+
+  return retval;
+}
+
+static octave_value_list
+sparse_find (const SparseMatrix& v)
+{
+  octave_value_list retval;
+  int nnz = v.nnz ();
+  dim_vector dv = v.dims ();
+  int nr = dv(0);
+  int nc = dv (1);
+
+  ColumnVector I (nnz), J (nnz);
+  ColumnVector S (nnz);
+
+  for (int i = 0, cx = 0; i < nc; i++) 
+    {
+      OCTAVE_QUIT;
+      for (int j = v.cidx(i); j < v.cidx(i+1); j++ ) 
+	{
+	  I (cx) = static_cast<double> (v.ridx(j) + 1);
+	  J (cx) = static_cast<double> (i + 1);
+	  S (cx) = v.data(j);
+	  cx++;
+	}
+    }
+
+  if (dv(0) == 1)
+    {
+      retval(0)= I.transpose ();
+      retval(1)= J.transpose ();
+      retval(2)= S.transpose ();
+    }
+  else
+    {
+      retval(0)= I;
+      retval(1)= J;
+      retval(2)= S;
+    }
+  retval(3)= (double) nr;
+  retval(4)= (double) nc;
+  return retval;
+}
+
+static octave_value_list
+sparse_find (const SparseComplexMatrix& v)
+{
+  octave_value_list retval;
+  int nnz = v.nnz ();
+  dim_vector dv = v.dims ();
+  int nr = dv(0);
+  int nc = dv (1);
+
+  ColumnVector I (nnz), J (nnz);
+  ComplexColumnVector S (nnz);
+
+  for (int i = 0, cx = 0; i < nc; i++) 
+    {
+      OCTAVE_QUIT;
+      for (int j = v.cidx(i); j < v.cidx(i+1); j++ ) 
+	{
+	  I (cx) = static_cast<double> (v.ridx(j) + 1);
+	  J (cx) = static_cast<double> (i + 1);
+	  S (cx) = v.data(j);
+	  cx++;
+	}
+    }
+
+  if (dv(0) == 1)
+    {
+      retval(0)= I.transpose ();
+      retval(1)= J.transpose ();
+      retval(2)= S.transpose ();
+    }
+  else
+    {
+      retval(0)= I;
+      retval(1)= J;
+      retval(2)= S;
+    }
+  retval(3)= (double) nr;
+  retval(4)= (double) nc;
+  return retval;
+}
+
+static octave_value_list
+sparse_find (const SparseBoolMatrix& v)
+{
+  octave_value_list retval;
+  int nnz = v.nnz ();
+  dim_vector dv = v.dims ();
+  int nr = dv(0);
+  int nc = dv (1);
+
+  ColumnVector I (nnz), J (nnz);
+  ColumnVector S (nnz);
+
+  for (int i = 0, cx = 0; i < nc; i++) 
+    {
+      OCTAVE_QUIT;
+      for (int j = v.cidx(i); j < v.cidx(i+1); j++ ) 
+	{
+	  I (cx) = static_cast<double> (v.ridx(j) + 1);
+	  J (cx) = static_cast<double> (i + 1);
+	  S (cx) = static_cast<double> (v.data(j));
+	  cx++;
+	}
+    }
+
+  if (dv(0) == 1)
+    {
+      retval(0)= I.transpose ();
+      retval(1)= J.transpose ();
+      retval(2)= S.transpose ();
+    }
+  else
+    {
+      retval(0)= I;
+      retval(1)= J;
+      retval(2)= S;
+    }
+  retval(3)= (double) nr;
+  retval(4)= (double) nc;
+  return retval;
+}
+
+// PKG_ADD: dispatch ("find", "spfind", "sparse matrix")
+// PKG_ADD: dispatch ("find", "spfind", "sparse complex matrix")
+// PKG_ADD: dispatch ("find", "spfind", "sparse bool matrix")
+DEFUN_DLD (spfind, args, nargout ,
+    "-*- texinfo -*-\n\
+@deftypefn {Loadable Function} {[...] =} spfind (...)\n\
+SPFIND: a sparse version of the find operator\n\
+@enumerate\n\
+    @item\n\
+@var{x }= spfind( @var{a })\n\
+    @itemize @w\n\
+is analagous to @var{x}= find(@var{A}(:))@*\n\
+where @var{A}= full(@var{a})\n\
+    @end itemize\n\
+    @item\n\
+[@var{i},@var{j},@var{v},@var{nr},@var{nc}] = spfind( @var{a} )\n\
+    @itemize @w\n\
+returns column vectors @var{i},@var{j},@var{v} such that@*\n\
+@var{a}= sparse(@var{i},@var{j},@var{v},@var{nr},@var{nc})\n\
+    @end itemize\n\
+@end enumerate\n\
+@seealso{sparse}\n\
+@end deftypefn")
+{
+   octave_value_list retval;
+   int nargin = args.length ();
+
+   if (nargin != 1) 
+     {
+       print_usage ("spfind");
+       return retval;
+     }
+      
+
+   octave_value arg = args(0);
+
+   if (arg.class_name () == "sparse")
+     {
+       if (arg.type_name () == "sparse matrix")
+	 retval = sparse_find (args(0).sparse_matrix_value ());
+       else if (arg.type_name () == "sparse complex matrix" ) 
+	 retval = sparse_find (args(0).sparse_complex_matrix_value ());
+       else if (arg.type_name () == "sparse bool matrix" ) 
+	 retval = sparse_find (args(0).sparse_bool_matrix_value ());
+       else 
+	 gripe_wrong_type_arg ("spfind", arg);
+     }
+   else
+     gripe_wrong_type_arg ("spfind", arg);
+     
+   if (nargout == 1 || nargout ==0 ) 
+     { 
+       // only find location as fortran index
+       octave_value_list tmp;
+       tmp(0) = retval(0) + (retval(1)-1)*retval(3);
+       retval = tmp;
+     }
+
+   return retval;
+}
+
+#define SPARSE_DIM_ARG_BODY(NAME, FUNC) \
+    int nargin = args.length(); \
+    octave_value retval; \
+    if ((nargin != 1 ) && (nargin != 2)) \
+      print_usage (#NAME); \
+    else { \
+      int dim = (nargin == 1 ? -1 : args(1).int_value(true) - 1); \
+      if (error_state) return retval; \
+      if (dim < -1 || dim > 1) { \
+	error (#NAME ": invalid dimension argument = %d", dim + 1); \
+        return retval; \
+      } \
+      if (args(0).type_id () == \
+	  octave_sparse_matrix::static_type_id () || args(0).type_id () == \
+	  octave_sparse_bool_matrix::static_type_id ()) { \
+	  retval = args(0).sparse_matrix_value () .FUNC (dim); \
+      } else if (args(0).type_id () == \
+		 octave_sparse_complex_matrix::static_type_id ()) { \
+	  retval = args(0).sparse_complex_matrix_value () .FUNC (dim); \
+      } else \
+	  print_usage (#NAME); \
+    } \
+    return retval
+
+// PKG_ADD: dispatch ("prod", "spprod", "sparse matrix");
+// PKG_ADD: dispatch ("prod", "spprod", "sparse complex matrix");
+// PKG_ADD: dispatch ("prod", "spprod", "sparse bool matrix");
+DEFUN_DLD (spprod, args, ,
+  "-*- texinfo -*-\n\
+@deftypefn {Loadable Function} {@var{y} =} spprod (@var{x},@var{dim})\n\
+Product of elements along dimension @var{dim}.  If @var{dim} is omitted,\n\
+it defaults to 1 (column-wise products).\n\
+@end deftypefn\n\
+@seealso{spsum, spsumsq}")
+{
+  SPARSE_DIM_ARG_BODY (spprod, prod);
+}
+
+// PKG_ADD: dispatch ("cumprod", "spcumprod", "sparse matrix");
+// PKG_ADD: dispatch ("cumprod", "spcumprod", "sparse complex matrix");
+// PKG_ADD: dispatch ("cumprod", "spcumprod", "sparse bool matrix");
+DEFUN_DLD (spcumprod, args, ,
+  "-*- texinfo -*-\n\
+@deftypefn {Loadable Function} {@var{y} =} spcumprod (@var{x},@var{dim})\n\
+Cumulative product of elements along dimension @var{dim}.  If @var{dim}\n\
+is omitted, it defaults to 1 (column-wise cumulative products).\n\
+@end deftypefn\n\
+@seealso{spcumsum}")
+{
+  SPARSE_DIM_ARG_BODY (spcumprod, cumprod);
+}
+
+// PKG_ADD: dispatch ("sum", "spsum", "sparse matrix");
+// PKG_ADD: dispatch ("sum", "spsum", "sparse complex matrix");
+// PKG_ADD: dispatch ("sum", "spsum", "sparse bool matrix");
+DEFUN_DLD (spsum, args, ,
+  "-*- texinfo -*-\n\
+@deftypefn {Loadable Function} {@var{y} =} spsum (@var{x},@var{dim})\n\
+Sum of elements along dimension @var{dim}.  If @var{dim} is omitted, it\n\
+defaults to 1 (column-wise sum).\n\
+@end deftypefn\n\
+@seealso{spprod, spsumsq}")
+{
+  SPARSE_DIM_ARG_BODY (spsum, sum);
+}
+
+// PKG_ADD: dispatch ("cumsum", "spcumsum", "sparse matrix");
+// PKG_ADD: dispatch ("cumsum", "spcumsum", "sparse complex matrix");
+// PKG_ADD: dispatch ("cumsum", "spcumsum", "sparse bool matrix");
+DEFUN_DLD (spcumsum, args, , 
+  "-*- texinfo -*-\n\
+@deftypefn {Loadable Function} {@var{y} =} spcumsum (@var{x},@var{dim})\n\
+Cumulative sum of elements along dimension @var{dim}.  If @var{dim}\n\
+is omitted, it defaults to 1 (column-wise cumulative sums).\n\
+@end deftypefn\n\
+@seealso{spcumprod}")
+{
+  SPARSE_DIM_ARG_BODY (spcumsum, cumsum);
+}
+
+// PKG_ADD: dispatch ("sumsq", "spsumsq", "sparse matrix");
+// PKG_ADD: dispatch ("sumsq", "spsumsq", "sparse complex matrix");
+// PKG_ADD: dispatch ("sumsq", "spsumsq", "sparse bool matrix");
+DEFUN_DLD (spsumsq, args, ,
+  "-*- texinfo -*-\n\
+@deftypefn {Loadable Function} {@var{y} =} spsumsq (@var{x},@var{dim})\n\
+Sum of squares of elements along dimension @var{dim}.  If @var{dim}\n\
+is omitted, it defaults to 1 (column-wise sum of squares).\n\
+This function is equivalent to computing\n\
+@example\n\
+spsum (x .* spconj (x), dim)\n\
+@end example\n\
+but it uses less memory and avoids calling @code{spconj} if @var{x} is\n\
+real.\n\
+@end deftypefn\n\
+@seealso{spprod, spsum}")
+{
+  SPARSE_DIM_ARG_BODY (spsumsq, sumsq);
+}
+
+#define MINMAX_BODY(FCN) \
+ \
+  octave_value_list retval;  \
+ \
+  int nargin = args.length (); \
+ \
+  if (nargin < 1 || nargin > 3 || nargout > 2) \
+    { \
+      print_usage (#FCN); \
+      return retval; \
+    } \
+ \
+  octave_value arg1; \
+  octave_value arg2; \
+  octave_value arg3; \
+ \
+  switch (nargin) \
+    { \
+    case 3: \
+      arg3 = args(2); \
+ \
+    case 2: \
+      arg2 = args(1); \
+ \
+    case 1: \
+      arg1 = args(0); \
+      break; \
+ \
+    default: \
+      panic_impossible (); \
+      break; \
+    } \
+ \
+  int dim; \
+  dim_vector dv = ((const octave_sparse_matrix&) arg1) .dims (); \
+  if (error_state) \
+    { \
+      gripe_wrong_type_arg (#FCN, arg1);  \
+      return retval; \
+    } \
+ \
+  if (nargin == 3) \
+    { \
+      dim = arg3.nint_value () - 1;  \
+      if (dim < 0 || dim >= dv.length ()) \
+        { \
+	  error ("%s: invalid dimension", #FCN); \
+	  return retval; \
+	} \
+    } \
+  else \
+    { \
+      dim = 0; \
+      while ((dim < dv.length ()) && (dv (dim) <= 1)) \
+	dim++; \
+      if (dim == dv.length ()) \
+	dim = 0; \
+    } \
+ \
+  bool single_arg = (nargin == 1) || arg2.is_empty();	\
+ \
+  if (single_arg && (nargout == 1 || nargout == 0)) \
+    { \
+      if (arg1.type_id () == octave_sparse_matrix::static_type_id ()) \
+	retval(0) = arg1.sparse_matrix_value () .FCN (dim); \
+      else if (arg1.type_id () == \
+	       octave_sparse_complex_matrix::static_type_id ()) \
+	retval(0) = arg1.sparse_complex_matrix_value () .FCN (dim); \
+      else \
+	gripe_wrong_type_arg (#FCN, arg1); \
+    } \
+  else if (single_arg && nargout == 2) \
+    { \
+      Array2<int> index; \
+ \
+      if (arg1.type_id () == octave_sparse_matrix::static_type_id ()) \
+	retval(0) = arg1.sparse_matrix_value () .FCN (index, dim); \
+      else if (arg1.type_id () == \
+	       octave_sparse_complex_matrix::static_type_id ()) \
+	retval(0) = arg1.sparse_complex_matrix_value () .FCN (index, dim); \
+      else \
+	gripe_wrong_type_arg (#FCN, arg1); \
+ \
+      int len = index.numel (); \
+ \
+      if (len > 0) \
+	{ \
+	  double nan_val = lo_ieee_nan_value (); \
+ \
+	  NDArray idx (index.dims ()); \
+ \
+	  for (int i = 0; i < len; i++) \
+	    { \
+	      OCTAVE_QUIT; \
+	      int tmp = index.elem (i) + 1; \
+	      idx.elem (i) = (tmp <= 0) \
+		? nan_val : static_cast<double> (tmp); \
+	    } \
+ \
+	  retval(1) = idx; \
+	} \
+      else \
+	retval(1) = NDArray (); \
+    } \
+  else \
+    { \
+      int arg1_is_scalar = arg1.is_scalar_type (); \
+      int arg2_is_scalar = arg2.is_scalar_type (); \
+ \
+      int arg1_is_complex = arg1.is_complex_type (); \
+      int arg2_is_complex = arg2.is_complex_type (); \
+ \
+      if (arg1_is_scalar) \
+	{ \
+	  if (arg1_is_complex || arg2_is_complex) \
+	    { \
+	      Complex c1 = arg1.complex_value (); \
+	      \
+	      SparseComplexMatrix m2 = arg2.sparse_complex_matrix_value (); \
+	      \
+	      if (! error_state) \
+		{ \
+		  SparseComplexMatrix result = FCN (c1, m2); \
+		  if (! error_state) \
+		    retval(0) = result; \
+		} \
+	    } \
+	  else \
+	    { \
+	      double d1 = arg1.double_value (); \
+	      SparseMatrix m2 = arg2.sparse_matrix_value (); \
+	      \
+	      if (! error_state) \
+		{ \
+		  SparseMatrix result = FCN (d1, m2); \
+		  if (! error_state) \
+		    retval(0) = result; \
+		} \
+	    } \
+	} \
+      else if (arg2_is_scalar) \
+	{ \
+	  if (arg1_is_complex || arg2_is_complex) \
+	    { \
+	      SparseComplexMatrix m1 = arg1.sparse_complex_matrix_value (); \
+ \
+	      if (! error_state) \
+		{ \
+		  Complex c2 = arg2.complex_value (); \
+		  SparseComplexMatrix result = FCN (m1, c2); \
+		  if (! error_state) \
+		    retval(0) = result; \
+		} \
+	    } \
+	  else \
+	    { \
+	      SparseMatrix m1 = arg1.sparse_matrix_value (); \
+ \
+	      if (! error_state) \
+		{ \
+		  double d2 = arg2.double_value (); \
+		  SparseMatrix result = FCN (m1, d2); \
+		  if (! error_state) \
+		    retval(0) = result; \
+		} \
+	    } \
+	} \
+      else \
+	{ \
+	  if (arg1_is_complex || arg2_is_complex) \
+	    { \
+	      SparseComplexMatrix m1 = arg1.sparse_complex_matrix_value (); \
+ \
+	      if (! error_state) \
+		{ \
+		  SparseComplexMatrix m2 = arg2.sparse_complex_matrix_value (); \
+ \
+		  if (! error_state) \
+		    { \
+		      SparseComplexMatrix result = FCN (m1, m2); \
+		      if (! error_state) \
+			retval(0) = result; \
+		    } \
+		} \
+	    } \
+	  else \
+	    { \
+	      SparseMatrix m1 = arg1.sparse_matrix_value (); \
+ \
+	      if (! error_state) \
+		{ \
+		  SparseMatrix m2 = arg2.sparse_matrix_value (); \
+ \
+		  if (! error_state) \
+		    { \
+		      SparseMatrix result = FCN (m1, m2); \
+		      if (! error_state) \
+			retval(0) = result; \
+		    } \
+		} \
+	    } \
+	} \
+    } \
+ \
+  return retval
+
+// PKG_ADD: dispatch ("min", "spmin", "sparse matrix");
+// PKG_ADD: dispatch ("min", "spmin", "sparse complex matrix");
+// PKG_ADD: dispatch ("min", "spmin", "sparse bool matrix");
+DEFUN_DLD (spmin, args, nargout,
+  "-*- texinfo -*-\n\
+@deftypefn {Mapping Function} {} spmin (@var{x}, @var{y}, @var{dim})\n\
+@deftypefnx {Mapping Function} {[@var{w}, @var{iw}] =} spmin (@var{x})\n\
+@cindex Utility Functions\n\
+For a vector argument, return the minimum value.  For a matrix\n\
+argument, return the minimum value from each column, as a row\n\
+vector, or over the dimension @var{dim} if defined. For two matrices\n\
+(or a matrix and scalar), return the pair-wise minimum.\n\
+Thus,\n\
+\n\
+@example\n\
+min (min (@var{x}))\n\
+@end example\n\
+\n\
+@noindent\n\
+returns the smallest element of @var{x}, and\n\
+\n\
+@example\n\
+@group\n\
+min (2:5, pi)\n\
+    @result{}  2.0000  3.0000  3.1416  3.1416\n\
+@end group\n\
+@end example\n\
+@noindent\n\
+compares each element of the range @code{2:5} with @code{pi}, and\n\
+returns a row vector of the minimum values.\n\
+\n\
+For complex arguments, the magnitude of the elements are used for\n\
+comparison.\n\
+\n\
+If called with one input and two output arguments,\n\
+@code{min} also returns the first index of the\n\
+minimum value(s). Thus,\n\
+\n\
+@example\n\
+@group\n\
+[x, ix] = min ([1, 3, 0, 2, 5])\n\
+    @result{}  x = 0\n\
+        ix = 3\n\
+@end group\n\
+@end example\n\
+@end deftypefn")
+{
+  MINMAX_BODY (min);
+}
+
+// PKG_ADD: dispatch ("max", "spmax", "sparse matrix");
+// PKG_ADD: dispatch ("max", "spmax", "sparse complex matrix");
+// PKG_ADD: dispatch ("max", "spmax", "sparse bool matrix");
+DEFUN_DLD (spmax, args, nargout,
+  "-*- texinfo -*-\n\
+@deftypefn {Mapping Function} {} spmax (@var{x}, @var{y}, @var{dim})\n\
+@deftypefnx {Mapping Function} {[@var{w}, @var{iw}] =} spmax (@var{x})\n\
+@cindex Utility Functions\n\
+For a vector argument, return the maximum value.  For a matrix\n\
+argument, return the maximum value from each column, as a row\n\
+vector, or over the dimension @var{dim} if defined. For two matrices\n\
+(or a matrix and scalar), return the pair-wise maximum.\n\
+Thus,\n\
+\n\
+@example\n\
+max (max (@var{x}))\n\
+@end example\n\
+\n\
+@noindent\n\
+returns the largest element of @var{x}, and\n\
+\n\
+@example\n\
+@group\n\
+max (2:5, pi)\n\
+    @result{}  3.1416  3.1416  4.0000  5.0000\n\
+@end group\n\
+@end example\n\
+@noindent\n\
+compares each element of the range @code{2:5} with @code{pi}, and\n\
+returns a row vector of the maximum values.\n\
+\n\
+For complex arguments, the magnitude of the elements are used for\n\
+comparison.\n\
+\n\
+If called with one input and two output arguments,\n\
+@code{max} also returns the first index of the\n\
+maximum value(s). Thus,\n\
+\n\
+@example\n\
+@group\n\
+[x, ix] = max ([1, 3, 5, 2, 5])\n\
+    @result{}  x = 5\n\
+        ix = 3\n\
+@end group\n\
+@end example\n\
+@end deftypefn")
+{
+  MINMAX_BODY (max);
+}
+
+// PKG_ADD: dispatch ("atan2", "spatan2", "sparse matrix");
+// PKG_ADD: dispatch ("atan2", "spatan2", "sparse complex matrix");
+// PKG_ADD: dispatch ("atan2", "spatan2", "sparse bool matrix");
+DEFUN_DLD (spatan2, args, ,
+  "-*- texinfo -*-\n\
+@deftypefn {Loadable Function} {} spatan2 (@var{y}, @var{x})\n\
+Compute atan (Y / X) for corresponding sparse matrix elements of Y and X.\n\
+The result is in range -pi to pi.\n\
+@end deftypefn\n")
+{
+  octave_value retval;
+  int nargin = args.length ();
+  if (nargin == 2) {  
+    SparseMatrix a, b;
+    double da, db;
+    bool is_double_a = false;
+    bool is_double_b = false;
+
+    if (args(0).is_scalar_type ())
+      {
+	is_double_a = true;
+	da = args(0).double_value();
+      }
+    else 
+      a = args(0).sparse_matrix_value ();
+
+    if (args(1).is_scalar_type ())
+      {
+	is_double_b = true;
+	db = args(1).double_value();
+      }
+    else 
+      b = args(1).sparse_matrix_value ();
+
+    if (is_double_a && is_double_b)
+      retval = Matrix (1, 1, atan2(da, db));
+    else if (is_double_a)
+      retval = atan2 (da, b);
+    else if (is_double_b)
+      retval = atan2 (a, db);
+    else
+      retval = atan2 (a, b);
+
+  } else
+    print_usage("spatan2");
+
+  return retval;
+}
+
+static octave_value
+make_spdiag (const octave_value& a, const octave_value& b)
+{
+  octave_value retval;
+
+  if (a.is_complex_type ())
+    {
+      SparseComplexMatrix m = a.sparse_complex_matrix_value ();
+      int k = b.nint_value(true);
+
+      if (error_state) 
+	return retval;
+
+      int nr = m.rows ();
+      int nc = m.columns ();
+	
+      if (nr == 0 || nc == 0)
+	retval = m;
+      else if (nr == 1 || nc == 1) 
+	{
+	  int roff = 0;
+	  int coff = 0;
+	  if (k > 0) 
+	    {
+	      roff = 0;
+	      coff = k;
+	    } 
+	  else if (k < 0) 
+	    {
+	      k = -k;
+	      roff = k;
+	      coff = 0;
+	    }
+
+	  if (nr == 1) 
+	    {
+	      int n = nc + k;
+	      int nz = m.nnz ();
+	      SparseComplexMatrix r (n, n, nz);
+	      for (int i = 0; i < coff+1; i++)
+		r.xcidx (i) = 0;
+	      for (int j = 0; j < nc; j++)
+		{
+		  for (int i = m.cidx(j); i < m.cidx(j+1); i++)
+		    {
+		      r.xdata (i) = m.data (i);
+		      r.xridx (i) = j + roff;
+		    }
+		  r.xcidx (j+coff+1) = m.cidx(j+1);
+		}
+	      for (int i = nc+coff+1; i < n+1; i++)
+		r.xcidx (i) = nz;
+	      retval = r;
+	    } 
+	  else 
+	    {
+	      int n = nr + k;
+	      int nz = m.nnz ();
+	      int ii = 0;
+	      int ir = m.ridx(0);
+	      SparseComplexMatrix r (n, n, nz);
+	      for (int i = 0; i < coff+1; i++)
+		r.xcidx (i) = 0;
+	      for (int i = 0; i < nr; i++)
+		{
+		  if (ir == i)
+		    {
+		      r.xdata (ii) = m.data (ii);
+		      r.xridx (ii++) = ir + roff;
+		      if (ii != nz)
+			ir = m.ridx (ii);
+		    }
+		  r.xcidx (i+coff+1) = ii;
+		}
+	      for (int i = nr+coff+1; i < n+1; i++)
+		r.xcidx (i) = nz;
+	      retval = r;
+	    }
+	} 
+      else 
+	{
+	  SparseComplexMatrix r = m.diag (k);
+	  // Don't use numel, since it can overflow for very large matrices
+	  if (r.rows () > 0 && r.cols () > 0)
+	    retval = r;
+	}
+    } 
+  else if (a.is_real_type ())
+    {
+      SparseMatrix m = a.sparse_matrix_value ();
+
+      int k = b.nint_value(true);
+
+      if (error_state) 
+	return retval;
+
+      int nr = m.rows ();
+      int nc = m.columns ();
+	
+      if (nr == 0 || nc == 0)
+	retval = m;
+      else if (nr == 1 || nc == 1) 
+	{
+	  int roff = 0;
+	  int coff = 0;
+	  if (k > 0) 
+	    {
+	      roff = 0;
+	      coff = k;
+	    } 
+	  else if (k < 0) 
+	    {
+	      k = -k;
+	      roff = k;
+	      coff = 0;
+	    }
+
+	  if (nr == 1) 
+	    {
+	      int n = nc + k;
+	      int nz = m.nnz ();
+	      SparseMatrix r (n, n, nz);
+
+	      for (int i = 0; i < coff+1; i++)
+		r.xcidx (i) = 0;
+	      for (int j = 0; j < nc; j++)
+		{
+		  for (int i = m.cidx(j); i < m.cidx(j+1); i++)
+		    {
+		      r.xdata (i) = m.data (i);
+		      r.xridx (i) = j + roff;
+		    }
+		  r.xcidx (j+coff+1) = m.cidx(j+1);
+		}
+	      for (int i = nc+coff+1; i < n+1; i++)
+		r.xcidx (i) = nz;
+	      retval = r;
+	    } 
+	  else 
+	    {
+	      int n = nr + k;
+	      int nz = m.nnz ();
+	      int ii = 0;
+	      int ir = m.ridx(0);
+	      SparseMatrix r (n, n, nz);
+	      for (int i = 0; i < coff+1; i++)
+		r.xcidx (i) = 0;
+	      for (int i = 0; i < nr; i++)
+		{
+		  if (ir == i)
+		    {
+		      r.xdata (ii) = m.data (ii);
+		      r.xridx (ii++) = ir + roff;
+		      if (ii != nz)
+			ir = m.ridx (ii);
+		    }
+		  r.xcidx (i+coff+1) = ii;
+		}
+	      for (int i = nr+coff+1; i < n+1; i++)
+		r.xcidx (i) = nz;
+	      retval = r;
+	    }
+	} 
+      else 
+	{
+	  SparseMatrix r = m.diag (k);
+	  if (r.rows () > 0 && r.cols () > 0)
+	    retval = r;
+	}
+    }
+  else
+    gripe_wrong_type_arg ("spdiag", a);
+
+  return retval;
+}
+
+// PKG_ADD: dispatch ("diag", "spdiag", "sparse matrix");
+// PKG_ADD: dispatch ("diag", "spdiag", "sparse complex matrix");
+// PKG_ADD: dispatch ("diag", "spdiag", "sparse bool matrix");
+DEFUN_DLD (spdiag, args, ,
+  "-*- texinfo -*-\n\
+@deftypefn {Loadable Function} {} spdiag (@var{v}, @var{k})\n\
+Return a diagonal matrix with the sparse vector @var{v} on diagonal\n\
+@var{k}. The second argument is optional. If it is positive, the vector is\n\
+placed on the @var{k}-th super-diagonal. If it is negative, it is placed\n\
+on the @var{-k}-th sub-diagonal.  The default value of @var{k} is 0, and\n\
+the vector is placed on the main diagonal.  For example,\n\
+\n\
+@example\n\
+spdiag ([1, 2, 3], 1)\n\
+ans =\n\
+\n\
+Compressed Column Sparse (rows=4, cols=4, nnz=3)\n\
+  (1 , 2) -> 1\n\
+  (2 , 3) -> 2\n\
+  (3 , 4) -> 3\n\
+@end example\n\
+\n\
+@end deftypefn\n\
+@seealso{diag}")
+{
+  octave_value retval;
+
+  int nargin = args.length ();
+
+  if (nargin == 1 && args(0).is_defined ())
+    retval = make_spdiag (args(0), octave_value(0.));
+  else if (nargin == 2 && args(0).is_defined () && args(1).is_defined ())
+    retval = make_spdiag (args(0), args(1));
+  else
+    print_usage ("spdiag");
+
+  return retval;
+}
+
+/*
+;;; Local Variables: ***
+;;; mode: C++ ***
+;;; End: ***
+*/