diff libcruft/lapack/zlaqr0.f @ 7034:68db500cb558

[project @ 2007-10-16 18:54:19 by jwe]
author jwe
date Tue, 16 Oct 2007 18:54:23 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libcruft/lapack/zlaqr0.f	Tue Oct 16 18:54:23 2007 +0000
@@ -0,0 +1,601 @@
+      SUBROUTINE ZLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
+     $                   IHIZ, Z, LDZ, WORK, LWORK, INFO )
+*
+*  -- LAPACK auxiliary routine (version 3.1) --
+*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+*     November 2006
+*
+*     .. Scalar Arguments ..
+      INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
+      LOGICAL            WANTT, WANTZ
+*     ..
+*     .. Array Arguments ..
+      COMPLEX*16         H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
+*     ..
+*
+*     Purpose
+*     =======
+*
+*     ZLAQR0 computes the eigenvalues of a Hessenberg matrix H
+*     and, optionally, the matrices T and Z from the Schur decomposition
+*     H = Z T Z**H, where T is an upper triangular matrix (the
+*     Schur form), and Z is the unitary matrix of Schur vectors.
+*
+*     Optionally Z may be postmultiplied into an input unitary
+*     matrix Q so that this routine can give the Schur factorization
+*     of a matrix A which has been reduced to the Hessenberg form H
+*     by the unitary matrix Q:  A = Q*H*Q**H = (QZ)*H*(QZ)**H.
+*
+*     Arguments
+*     =========
+*
+*     WANTT   (input) LOGICAL
+*          = .TRUE. : the full Schur form T is required;
+*          = .FALSE.: only eigenvalues are required.
+*
+*     WANTZ   (input) LOGICAL
+*          = .TRUE. : the matrix of Schur vectors Z is required;
+*          = .FALSE.: Schur vectors are not required.
+*
+*     N     (input) INTEGER
+*           The order of the matrix H.  N .GE. 0.
+*
+*     ILO   (input) INTEGER
+*     IHI   (input) INTEGER
+*           It is assumed that H is already upper triangular in rows
+*           and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
+*           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
+*           previous call to ZGEBAL, and then passed to ZGEHRD when the
+*           matrix output by ZGEBAL is reduced to Hessenberg form.
+*           Otherwise, ILO and IHI should be set to 1 and N,
+*           respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
+*           If N = 0, then ILO = 1 and IHI = 0.
+*
+*     H     (input/output) COMPLEX*16 array, dimension (LDH,N)
+*           On entry, the upper Hessenberg matrix H.
+*           On exit, if INFO = 0 and WANTT is .TRUE., then H
+*           contains the upper triangular matrix T from the Schur
+*           decomposition (the Schur form). If INFO = 0 and WANT is
+*           .FALSE., then the contents of H are unspecified on exit.
+*           (The output value of H when INFO.GT.0 is given under the
+*           description of INFO below.)
+*
+*           This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
+*           j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
+*
+*     LDH   (input) INTEGER
+*           The leading dimension of the array H. LDH .GE. max(1,N).
+*
+*     W        (output) COMPLEX*16 array, dimension (N)
+*           The computed eigenvalues of H(ILO:IHI,ILO:IHI) are stored
+*           in W(ILO:IHI). If WANTT is .TRUE., then the eigenvalues are
+*           stored in the same order as on the diagonal of the Schur
+*           form returned in H, with W(i) = H(i,i).
+*
+*     Z     (input/output) COMPLEX*16 array, dimension (LDZ,IHI)
+*           If WANTZ is .FALSE., then Z is not referenced.
+*           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
+*           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
+*           orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
+*           (The output value of Z when INFO.GT.0 is given under
+*           the description of INFO below.)
+*
+*     LDZ   (input) INTEGER
+*           The leading dimension of the array Z.  if WANTZ is .TRUE.
+*           then LDZ.GE.MAX(1,IHIZ).  Otherwize, LDZ.GE.1.
+*
+*     WORK  (workspace/output) COMPLEX*16 array, dimension LWORK
+*           On exit, if LWORK = -1, WORK(1) returns an estimate of
+*           the optimal value for LWORK.
+*
+*     LWORK (input) INTEGER
+*           The dimension of the array WORK.  LWORK .GE. max(1,N)
+*           is sufficient, but LWORK typically as large as 6*N may
+*           be required for optimal performance.  A workspace query
+*           to determine the optimal workspace size is recommended.
+*
+*           If LWORK = -1, then ZLAQR0 does a workspace query.
+*           In this case, ZLAQR0 checks the input parameters and
+*           estimates the optimal workspace size for the given
+*           values of N, ILO and IHI.  The estimate is returned
+*           in WORK(1).  No error message related to LWORK is
+*           issued by XERBLA.  Neither H nor Z are accessed.
+*
+*
+*     INFO  (output) INTEGER
+*             =  0:  successful exit
+*           .GT. 0:  if INFO = i, ZLAQR0 failed to compute all of
+*                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
+*                and WI contain those eigenvalues which have been
+*                successfully computed.  (Failures are rare.)
+*
+*                If INFO .GT. 0 and WANT is .FALSE., then on exit,
+*                the remaining unconverged eigenvalues are the eigen-
+*                values of the upper Hessenberg matrix rows and
+*                columns ILO through INFO of the final, output
+*                value of H.
+*
+*                If INFO .GT. 0 and WANTT is .TRUE., then on exit
+*
+*           (*)  (initial value of H)*U  = U*(final value of H)
+*
+*                where U is a unitary matrix.  The final
+*                value of  H is upper Hessenberg and triangular in
+*                rows and columns INFO+1 through IHI.
+*
+*                If INFO .GT. 0 and WANTZ is .TRUE., then on exit
+*
+*                  (final value of Z(ILO:IHI,ILOZ:IHIZ)
+*                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
+*
+*                where U is the unitary matrix in (*) (regard-
+*                less of the value of WANTT.)
+*
+*                If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
+*                accessed.
+*
+*     ================================================================
+*     Based on contributions by
+*        Karen Braman and Ralph Byers, Department of Mathematics,
+*        University of Kansas, USA
+*
+*     ================================================================
+*     References:
+*       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
+*       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
+*       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
+*       929--947, 2002.
+*
+*       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
+*       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
+*       of Matrix Analysis, volume 23, pages 948--973, 2002.
+*
+*     ================================================================
+*     .. Parameters ..
+*
+*     ==== Matrices of order NTINY or smaller must be processed by
+*     .    ZLAHQR because of insufficient subdiagonal scratch space.
+*     .    (This is a hard limit.) ====
+*
+*     ==== Exceptional deflation windows:  try to cure rare
+*     .    slow convergence by increasing the size of the
+*     .    deflation window after KEXNW iterations. =====
+*
+*     ==== Exceptional shifts: try to cure rare slow convergence
+*     .    with ad-hoc exceptional shifts every KEXSH iterations.
+*     .    The constants WILK1 and WILK2 are used to form the
+*     .    exceptional shifts. ====
+*
+      INTEGER            NTINY
+      PARAMETER          ( NTINY = 11 )
+      INTEGER            KEXNW, KEXSH
+      PARAMETER          ( KEXNW = 5, KEXSH = 6 )
+      DOUBLE PRECISION   WILK1
+      PARAMETER          ( WILK1 = 0.75d0 )
+      COMPLEX*16         ZERO, ONE
+      PARAMETER          ( ZERO = ( 0.0d0, 0.0d0 ),
+     $                   ONE = ( 1.0d0, 0.0d0 ) )
+      DOUBLE PRECISION   TWO
+      PARAMETER          ( TWO = 2.0d0 )
+*     ..
+*     .. Local Scalars ..
+      COMPLEX*16         AA, BB, CC, CDUM, DD, DET, RTDISC, SWAP, TR2
+      DOUBLE PRECISION   S
+      INTEGER            I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
+     $                   KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
+     $                   LWKOPT, NDFL, NH, NHO, NIBBLE, NMIN, NS, NSMAX,
+     $                   NSR, NVE, NW, NWMAX, NWR
+      LOGICAL            NWINC, SORTED
+      CHARACTER          JBCMPZ*2
+*     ..
+*     .. External Functions ..
+      INTEGER            ILAENV
+      EXTERNAL           ILAENV
+*     ..
+*     .. Local Arrays ..
+      COMPLEX*16         ZDUM( 1, 1 )
+*     ..
+*     .. External Subroutines ..
+      EXTERNAL           ZLACPY, ZLAHQR, ZLAQR3, ZLAQR4, ZLAQR5
+*     ..
+*     .. Intrinsic Functions ..
+      INTRINSIC          ABS, DBLE, DCMPLX, DIMAG, INT, MAX, MIN, MOD,
+     $                   SQRT
+*     ..
+*     .. Statement Functions ..
+      DOUBLE PRECISION   CABS1
+*     ..
+*     .. Statement Function definitions ..
+      CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
+*     ..
+*     .. Executable Statements ..
+      INFO = 0
+*
+*     ==== Quick return for N = 0: nothing to do. ====
+*
+      IF( N.EQ.0 ) THEN
+         WORK( 1 ) = ONE
+         RETURN
+      END IF
+*
+*     ==== Set up job flags for ILAENV. ====
+*
+      IF( WANTT ) THEN
+         JBCMPZ( 1: 1 ) = 'S'
+      ELSE
+         JBCMPZ( 1: 1 ) = 'E'
+      END IF
+      IF( WANTZ ) THEN
+         JBCMPZ( 2: 2 ) = 'V'
+      ELSE
+         JBCMPZ( 2: 2 ) = 'N'
+      END IF
+*
+*     ==== Tiny matrices must use ZLAHQR. ====
+*
+      IF( N.LE.NTINY ) THEN
+*
+*        ==== Estimate optimal workspace. ====
+*
+         LWKOPT = 1
+         IF( LWORK.NE.-1 )
+     $      CALL ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
+     $                   IHIZ, Z, LDZ, INFO )
+      ELSE
+*
+*        ==== Use small bulge multi-shift QR with aggressive early
+*        .    deflation on larger-than-tiny matrices. ====
+*
+*        ==== Hope for the best. ====
+*
+         INFO = 0
+*
+*        ==== NWR = recommended deflation window size.  At this
+*        .    point,  N .GT. NTINY = 11, so there is enough
+*        .    subdiagonal workspace for NWR.GE.2 as required.
+*        .    (In fact, there is enough subdiagonal space for
+*        .    NWR.GE.3.) ====
+*
+         NWR = ILAENV( 13, 'ZLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
+         NWR = MAX( 2, NWR )
+         NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
+         NW = NWR
+*
+*        ==== NSR = recommended number of simultaneous shifts.
+*        .    At this point N .GT. NTINY = 11, so there is at
+*        .    enough subdiagonal workspace for NSR to be even
+*        .    and greater than or equal to two as required. ====
+*
+         NSR = ILAENV( 15, 'ZLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
+         NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO )
+         NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
+*
+*        ==== Estimate optimal workspace ====
+*
+*        ==== Workspace query call to ZLAQR3 ====
+*
+         CALL ZLAQR3( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ,
+     $                IHIZ, Z, LDZ, LS, LD, W, H, LDH, N, H, LDH, N, H,
+     $                LDH, WORK, -1 )
+*
+*        ==== Optimal workspace = MAX(ZLAQR5, ZLAQR3) ====
+*
+         LWKOPT = MAX( 3*NSR / 2, INT( WORK( 1 ) ) )
+*
+*        ==== Quick return in case of workspace query. ====
+*
+         IF( LWORK.EQ.-1 ) THEN
+            WORK( 1 ) = DCMPLX( LWKOPT, 0 )
+            RETURN
+         END IF
+*
+*        ==== ZLAHQR/ZLAQR0 crossover point ====
+*
+         NMIN = ILAENV( 12, 'ZLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
+         NMIN = MAX( NTINY, NMIN )
+*
+*        ==== Nibble crossover point ====
+*
+         NIBBLE = ILAENV( 14, 'ZLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
+         NIBBLE = MAX( 0, NIBBLE )
+*
+*        ==== Accumulate reflections during ttswp?  Use block
+*        .    2-by-2 structure during matrix-matrix multiply? ====
+*
+         KACC22 = ILAENV( 16, 'ZLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
+         KACC22 = MAX( 0, KACC22 )
+         KACC22 = MIN( 2, KACC22 )
+*
+*        ==== NWMAX = the largest possible deflation window for
+*        .    which there is sufficient workspace. ====
+*
+         NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
+*
+*        ==== NSMAX = the Largest number of simultaneous shifts
+*        .    for which there is sufficient workspace. ====
+*
+         NSMAX = MIN( ( N+6 ) / 9, 2*LWORK / 3 )
+         NSMAX = NSMAX - MOD( NSMAX, 2 )
+*
+*        ==== NDFL: an iteration count restarted at deflation. ====
+*
+         NDFL = 1
+*
+*        ==== ITMAX = iteration limit ====
+*
+         ITMAX = MAX( 30, 2*KEXSH )*MAX( 10, ( IHI-ILO+1 ) )
+*
+*        ==== Last row and column in the active block ====
+*
+         KBOT = IHI
+*
+*        ==== Main Loop ====
+*
+         DO 70 IT = 1, ITMAX
+*
+*           ==== Done when KBOT falls below ILO ====
+*
+            IF( KBOT.LT.ILO )
+     $         GO TO 80
+*
+*           ==== Locate active block ====
+*
+            DO 10 K = KBOT, ILO + 1, -1
+               IF( H( K, K-1 ).EQ.ZERO )
+     $            GO TO 20
+   10       CONTINUE
+            K = ILO
+   20       CONTINUE
+            KTOP = K
+*
+*           ==== Select deflation window size ====
+*
+            NH = KBOT - KTOP + 1
+            IF( NDFL.LT.KEXNW .OR. NH.LT.NW ) THEN
+*
+*              ==== Typical deflation window.  If possible and
+*              .    advisable, nibble the entire active block.
+*              .    If not, use size NWR or NWR+1 depending upon
+*              .    which has the smaller corresponding subdiagonal
+*              .    entry (a heuristic). ====
+*
+               NWINC = .TRUE.
+               IF( NH.LE.MIN( NMIN, NWMAX ) ) THEN
+                  NW = NH
+               ELSE
+                  NW = MIN( NWR, NH, NWMAX )
+                  IF( NW.LT.NWMAX ) THEN
+                     IF( NW.GE.NH-1 ) THEN
+                        NW = NH
+                     ELSE
+                        KWTOP = KBOT - NW + 1
+                        IF( CABS1( H( KWTOP, KWTOP-1 ) ).GT.
+     $                      CABS1( H( KWTOP-1, KWTOP-2 ) ) )NW = NW + 1
+                     END IF
+                  END IF
+               END IF
+            ELSE
+*
+*              ==== Exceptional deflation window.  If there have
+*              .    been no deflations in KEXNW or more iterations,
+*              .    then vary the deflation window size.   At first,
+*              .    because, larger windows are, in general, more
+*              .    powerful than smaller ones, rapidly increase the
+*              .    window up to the maximum reasonable and possible.
+*              .    Then maybe try a slightly smaller window.  ====
+*
+               IF( NWINC .AND. NW.LT.MIN( NWMAX, NH ) ) THEN
+                  NW = MIN( NWMAX, NH, 2*NW )
+               ELSE
+                  NWINC = .FALSE.
+                  IF( NW.EQ.NH .AND. NH.GT.2 )
+     $               NW = NH - 1
+               END IF
+            END IF
+*
+*           ==== Aggressive early deflation:
+*           .    split workspace under the subdiagonal into
+*           .      - an nw-by-nw work array V in the lower
+*           .        left-hand-corner,
+*           .      - an NW-by-at-least-NW-but-more-is-better
+*           .        (NW-by-NHO) horizontal work array along
+*           .        the bottom edge,
+*           .      - an at-least-NW-but-more-is-better (NHV-by-NW)
+*           .        vertical work array along the left-hand-edge.
+*           .        ====
+*
+            KV = N - NW + 1
+            KT = NW + 1
+            NHO = ( N-NW-1 ) - KT + 1
+            KWV = NW + 2
+            NVE = ( N-NW ) - KWV + 1
+*
+*           ==== Aggressive early deflation ====
+*
+            CALL ZLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
+     $                   IHIZ, Z, LDZ, LS, LD, W, H( KV, 1 ), LDH, NHO,
+     $                   H( KV, KT ), LDH, NVE, H( KWV, 1 ), LDH, WORK,
+     $                   LWORK )
+*
+*           ==== Adjust KBOT accounting for new deflations. ====
+*
+            KBOT = KBOT - LD
+*
+*           ==== KS points to the shifts. ====
+*
+            KS = KBOT - LS + 1
+*
+*           ==== Skip an expensive QR sweep if there is a (partly
+*           .    heuristic) reason to expect that many eigenvalues
+*           .    will deflate without it.  Here, the QR sweep is
+*           .    skipped if many eigenvalues have just been deflated
+*           .    or if the remaining active block is small.
+*
+            IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT-
+     $          KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN
+*
+*              ==== NS = nominal number of simultaneous shifts.
+*              .    This may be lowered (slightly) if ZLAQR3
+*              .    did not provide that many shifts. ====
+*
+               NS = MIN( NSMAX, NSR, MAX( 2, KBOT-KTOP ) )
+               NS = NS - MOD( NS, 2 )
+*
+*              ==== If there have been no deflations
+*              .    in a multiple of KEXSH iterations,
+*              .    then try exceptional shifts.
+*              .    Otherwise use shifts provided by
+*              .    ZLAQR3 above or from the eigenvalues
+*              .    of a trailing principal submatrix. ====
+*
+               IF( MOD( NDFL, KEXSH ).EQ.0 ) THEN
+                  KS = KBOT - NS + 1
+                  DO 30 I = KBOT, KS + 1, -2
+                     W( I ) = H( I, I ) + WILK1*CABS1( H( I, I-1 ) )
+                     W( I-1 ) = W( I )
+   30             CONTINUE
+               ELSE
+*
+*                 ==== Got NS/2 or fewer shifts? Use ZLAQR4 or
+*                 .    ZLAHQR on a trailing principal submatrix to
+*                 .    get more. (Since NS.LE.NSMAX.LE.(N+6)/9,
+*                 .    there is enough space below the subdiagonal
+*                 .    to fit an NS-by-NS scratch array.) ====
+*
+                  IF( KBOT-KS+1.LE.NS / 2 ) THEN
+                     KS = KBOT - NS + 1
+                     KT = N - NS + 1
+                     CALL ZLACPY( 'A', NS, NS, H( KS, KS ), LDH,
+     $                            H( KT, 1 ), LDH )
+                     IF( NS.GT.NMIN ) THEN
+                        CALL ZLAQR4( .false., .false., NS, 1, NS,
+     $                               H( KT, 1 ), LDH, W( KS ), 1, 1,
+     $                               ZDUM, 1, WORK, LWORK, INF )
+                     ELSE
+                        CALL ZLAHQR( .false., .false., NS, 1, NS,
+     $                               H( KT, 1 ), LDH, W( KS ), 1, 1,
+     $                               ZDUM, 1, INF )
+                     END IF
+                     KS = KS + INF
+*
+*                    ==== In case of a rare QR failure use
+*                    .    eigenvalues of the trailing 2-by-2
+*                    .    principal submatrix.  Scale to avoid
+*                    .    overflows, underflows and subnormals.
+*                    .    (The scale factor S can not be zero,
+*                    .    because H(KBOT,KBOT-1) is nonzero.) ====
+*
+                     IF( KS.GE.KBOT ) THEN
+                        S = CABS1( H( KBOT-1, KBOT-1 ) ) +
+     $                      CABS1( H( KBOT, KBOT-1 ) ) +
+     $                      CABS1( H( KBOT-1, KBOT ) ) +
+     $                      CABS1( H( KBOT, KBOT ) )
+                        AA = H( KBOT-1, KBOT-1 ) / S
+                        CC = H( KBOT, KBOT-1 ) / S
+                        BB = H( KBOT-1, KBOT ) / S
+                        DD = H( KBOT, KBOT ) / S
+                        TR2 = ( AA+DD ) / TWO
+                        DET = ( AA-TR2 )*( DD-TR2 ) - BB*CC
+                        RTDISC = SQRT( -DET )
+                        W( KBOT-1 ) = ( TR2+RTDISC )*S
+                        W( KBOT ) = ( TR2-RTDISC )*S
+*
+                        KS = KBOT - 1
+                     END IF
+                  END IF
+*
+                  IF( KBOT-KS+1.GT.NS ) THEN
+*
+*                    ==== Sort the shifts (Helps a little) ====
+*
+                     SORTED = .false.
+                     DO 50 K = KBOT, KS + 1, -1
+                        IF( SORTED )
+     $                     GO TO 60
+                        SORTED = .true.
+                        DO 40 I = KS, K - 1
+                           IF( CABS1( W( I ) ).LT.CABS1( W( I+1 ) ) )
+     $                          THEN
+                              SORTED = .false.
+                              SWAP = W( I )
+                              W( I ) = W( I+1 )
+                              W( I+1 ) = SWAP
+                           END IF
+   40                   CONTINUE
+   50                CONTINUE
+   60                CONTINUE
+                  END IF
+               END IF
+*
+*              ==== If there are only two shifts, then use
+*              .    only one.  ====
+*
+               IF( KBOT-KS+1.EQ.2 ) THEN
+                  IF( CABS1( W( KBOT )-H( KBOT, KBOT ) ).LT.
+     $                CABS1( W( KBOT-1 )-H( KBOT, KBOT ) ) ) THEN
+                     W( KBOT-1 ) = W( KBOT )
+                  ELSE
+                     W( KBOT ) = W( KBOT-1 )
+                  END IF
+               END IF
+*
+*              ==== Use up to NS of the the smallest magnatiude
+*              .    shifts.  If there aren't NS shifts available,
+*              .    then use them all, possibly dropping one to
+*              .    make the number of shifts even. ====
+*
+               NS = MIN( NS, KBOT-KS+1 )
+               NS = NS - MOD( NS, 2 )
+               KS = KBOT - NS + 1
+*
+*              ==== Small-bulge multi-shift QR sweep:
+*              .    split workspace under the subdiagonal into
+*              .    - a KDU-by-KDU work array U in the lower
+*              .      left-hand-corner,
+*              .    - a KDU-by-at-least-KDU-but-more-is-better
+*              .      (KDU-by-NHo) horizontal work array WH along
+*              .      the bottom edge,
+*              .    - and an at-least-KDU-but-more-is-better-by-KDU
+*              .      (NVE-by-KDU) vertical work WV arrow along
+*              .      the left-hand-edge. ====
+*
+               KDU = 3*NS - 3
+               KU = N - KDU + 1
+               KWH = KDU + 1
+               NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1
+               KWV = KDU + 4
+               NVE = N - KDU - KWV + 1
+*
+*              ==== Small-bulge multi-shift QR sweep ====
+*
+               CALL ZLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NS,
+     $                      W( KS ), H, LDH, ILOZ, IHIZ, Z, LDZ, WORK,
+     $                      3, H( KU, 1 ), LDH, NVE, H( KWV, 1 ), LDH,
+     $                      NHO, H( KU, KWH ), LDH )
+            END IF
+*
+*           ==== Note progress (or the lack of it). ====
+*
+            IF( LD.GT.0 ) THEN
+               NDFL = 1
+            ELSE
+               NDFL = NDFL + 1
+            END IF
+*
+*           ==== End of main loop ====
+   70    CONTINUE
+*
+*        ==== Iteration limit exceeded.  Set INFO to show where
+*        .    the problem occurred and exit. ====
+*
+         INFO = KBOT
+   80    CONTINUE
+      END IF
+*
+*     ==== Return the optimal value of LWORK. ====
+*
+      WORK( 1 ) = DCMPLX( LWKOPT, 0 )
+*
+*     ==== End of ZLAQR0 ====
+*
+      END