diff libcruft/amos/cbesy.f @ 7789:82be108cc558

First attempt at single precision tyeps * * * corrections to qrupdate single precision routines * * * prefer demotion to single over promotion to double * * * Add single precision support to log2 function * * * Trivial PROJECT file update * * * Cache optimized hermitian/transpose methods * * * Add tests for tranpose/hermitian and ChangeLog entry for new transpose code
author David Bateman <dbateman@free.fr>
date Sun, 27 Apr 2008 22:34:17 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libcruft/amos/cbesy.f	Sun Apr 27 22:34:17 2008 +0200
@@ -0,0 +1,226 @@
+      SUBROUTINE CBESY(Z, FNU, KODE, N, CY, NZ, CWRK, IERR)
+C***BEGIN PROLOGUE  CBESY
+C***DATE WRITTEN   830501   (YYMMDD)
+C***REVISION DATE  890801   (YYMMDD)
+C***CATEGORY NO.  B5K
+C***KEYWORDS  Y-BESSEL FUNCTION,BESSEL FUNCTION OF COMPLEX ARGUMENT,
+C             BESSEL FUNCTION OF SECOND KIND
+C***AUTHOR  AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
+C***PURPOSE  TO COMPUTE THE Y-BESSEL FUNCTION OF A COMPLEX ARGUMENT
+C***DESCRIPTION
+C
+C         ON KODE=1, CBESY COMPUTES AN N MEMBER SEQUENCE OF COMPLEX
+C         BESSEL FUNCTIONS CY(I)=Y(FNU+I-1,Z) FOR REAL, NONNEGATIVE
+C         ORDERS FNU+I-1, I=1,...,N AND COMPLEX Z IN THE CUT PLANE
+C         -PI.LT.ARG(Z).LE.PI. ON KODE=2, CBESY RETURNS THE SCALED
+C         FUNCTIONS
+C
+C         CY(I)=EXP(-ABS(Y))*Y(FNU+I-1,Z)   I = 1,...,N , Y=AIMAG(Z)
+C
+C         WHICH REMOVE THE EXPONENTIAL GROWTH IN BOTH THE UPPER AND
+C         LOWER HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND NOTATION
+C         ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL FUNCTIONS
+C         (REF. 1).
+C
+C         INPUT
+C           Z      - Z=CMPLX(X,Y), Z.NE.CMPLX(0.,0.),-PI.LT.ARG(Z).LE.PI
+C           FNU    - ORDER OF INITIAL Y FUNCTION, FNU.GE.0.0E0
+C           KODE   - A PARAMETER TO INDICATE THE SCALING OPTION
+C                    KODE= 1  RETURNS
+C                             CY(I)=Y(FNU+I-1,Z), I=1,...,N
+C                        = 2  RETURNS
+C                             CY(I)=Y(FNU+I-1,Z)*EXP(-ABS(Y)), I=1,...,N
+C                             WHERE Y=AIMAG(Z)
+C           N      - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1
+C           CWRK   - A COMPLEX WORK VECTOR OF DIMENSION AT LEAST N
+C
+C         OUTPUT
+C           CY     - A COMPLEX VECTOR WHOSE FIRST N COMPONENTS CONTAIN
+C                    VALUES FOR THE SEQUENCE
+C                    CY(I)=Y(FNU+I-1,Z)  OR
+C                    CY(I)=Y(FNU+I-1,Z)*EXP(-ABS(Y))  I=1,...,N
+C                    DEPENDING ON KODE.
+C           NZ     - NZ=0 , A NORMAL RETURN
+C                    NZ.GT.0 , NZ COMPONENTS OF CY SET TO ZERO DUE TO
+C                    UNDERFLOW (GENERALLY ON KODE=2)
+C           IERR   - ERROR FLAG
+C                    IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
+C                    IERR=1, INPUT ERROR   - NO COMPUTATION
+C                    IERR=2, OVERFLOW      - NO COMPUTATION, FNU+N-1 IS
+C                            TOO LARGE OR CABS(Z) IS TOO SMALL OR BOTH
+C                    IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
+C                            BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
+C                            REDUCTION PRODUCE LESS THAN HALF OF MACHINE
+C                            ACCURACY
+C                    IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
+C                            TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
+C                            CANCE BY ARGUMENT REDUCTION
+C                    IERR=5, ERROR              - NO COMPUTATION,
+C                            ALGORITHM TERMINATION CONDITION NOT MET
+C
+C***LONG DESCRIPTION
+C
+C         THE COMPUTATION IS CARRIED OUT BY THE FORMULA
+C
+C         Y(FNU,Z)=0.5*(H(1,FNU,Z)-H(2,FNU,Z))/I
+C
+C         WHERE I**2 = -1 AND THE HANKEL BESSEL FUNCTIONS H(1,FNU,Z)
+C         AND H(2,FNU,Z) ARE CALCULATED IN CBESH.
+C
+C         FOR NEGATIVE ORDERS,THE FORMULA
+C
+C              Y(-FNU,Z) = Y(FNU,Z)*COS(PI*FNU) + J(FNU,Z)*SIN(PI*FNU)
+C
+C         CAN BE USED. HOWEVER,FOR LARGE ORDERS CLOSE TO HALF ODD
+C         INTEGERS THE FUNCTION CHANGES RADICALLY. WHEN FNU IS A LARGE
+C         POSITIVE HALF ODD INTEGER,THE MAGNITUDE OF Y(-FNU,Z)=J(FNU,Z)*
+C         SIN(PI*FNU) IS A LARGE NEGATIVE POWER OF TEN. BUT WHEN FNU IS
+C         NOT A HALF ODD INTEGER, Y(FNU,Z) DOMINATES IN MAGNITUDE WITH A
+C         LARGE POSITIVE POWER OF TEN AND THE MOST THAT THE SECOND TERM
+C         CAN BE REDUCED IS BY UNIT ROUNDOFF FROM THE COEFFICIENT. THUS,
+C         WIDE CHANGES CAN OCCUR WITHIN UNIT ROUNDOFF OF A LARGE HALF
+C         ODD INTEGER. HERE, LARGE MEANS FNU.GT.CABS(Z).
+C
+C         IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
+C         MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
+C         LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
+C         CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
+C         LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
+C         IERR=3 IS TRIGGERED WHERE UR=R1MACH(4)=UNIT ROUNDOFF. ALSO
+C         IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
+C         LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
+C         MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
+C         INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
+C         RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
+C         ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
+C         ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
+C         ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
+C         THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
+C         TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
+C         IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
+C         SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
+C
+C         THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
+C         BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
+C         ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
+C         SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
+C         ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
+C         ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
+C         CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
+C         HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
+C         ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
+C         SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
+C         THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
+C         0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
+C         THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
+C         COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
+C         BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
+C         COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
+C         MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
+C         THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
+C         OR -PI/2+P.
+C
+C***REFERENCES  HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
+C                 AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
+C                 COMMERCE, 1955.
+C
+C               COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
+C                 BY D. E. AMOS, SAND83-0083, MAY, 1983.
+C
+C               COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
+C                 AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
+C
+C               A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
+C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
+C                 1018, MAY, 1985
+C
+C               A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
+C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
+C                 MATH. SOFTWARE, 1986
+C
+C***ROUTINES CALLED  CBESH,I1MACH,R1MACH
+C***END PROLOGUE  CBESY
+C
+      COMPLEX CWRK, CY, C1, C2, EX, HCI, Z, ZU, ZV
+      REAL ELIM, EY, FNU, R1, R2, TAY, XX, YY, R1MACH, ASCLE, RTOL,
+     * ATOL, AA, BB
+      INTEGER I, IERR, K, KODE, K1, K2, N, NZ, NZ1, NZ2, I1MACH
+      DIMENSION CY(N), CWRK(N)
+C***FIRST EXECUTABLE STATEMENT  CBESY
+      XX = REAL(Z)
+      YY = AIMAG(Z)
+      IERR = 0
+      NZ=0
+      IF (XX.EQ.0.0E0 .AND. YY.EQ.0.0E0) IERR=1
+      IF (FNU.LT.0.0E0) IERR=1
+      IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
+      IF (N.LT.1) IERR=1
+      IF (IERR.NE.0) RETURN
+      HCI = CMPLX(0.0E0,0.5E0)
+      CALL CBESH(Z, FNU, KODE, 1, N, CY, NZ1, IERR)
+      IF (IERR.NE.0.AND.IERR.NE.3) GO TO 170
+      CALL CBESH(Z, FNU, KODE, 2, N, CWRK, NZ2, IERR)
+      IF (IERR.NE.0.AND.IERR.NE.3) GO TO 170
+      NZ = MIN0(NZ1,NZ2)
+      IF (KODE.EQ.2) GO TO 60
+      DO 50 I=1,N
+        CY(I) = HCI*(CWRK(I)-CY(I))
+   50 CONTINUE
+      RETURN
+   60 CONTINUE
+      TOL = AMAX1(R1MACH(4),1.0E-18)
+      K1 = I1MACH(12)
+      K2 = I1MACH(13)
+      K = MIN0(IABS(K1),IABS(K2))
+      R1M5 = R1MACH(5)
+C-----------------------------------------------------------------------
+C     ELIM IS THE APPROXIMATE EXPONENTIAL UNDER- AND OVERFLOW LIMIT
+C-----------------------------------------------------------------------
+      ELIM = 2.303E0*(FLOAT(K)*R1M5-3.0E0)
+      R1 = COS(XX)
+      R2 = SIN(XX)
+      EX = CMPLX(R1,R2)
+      EY = 0.0E0
+      TAY = ABS(YY+YY)
+      IF (TAY.LT.ELIM) EY = EXP(-TAY)
+      IF (YY.LT.0.0E0) GO TO 90
+      C1 = EX*CMPLX(EY,0.0E0)
+      C2 = CONJG(EX)
+   70 CONTINUE
+      NZ = 0
+      RTOL = 1.0E0/TOL
+      ASCLE = R1MACH(1)*RTOL*1.0E+3
+      DO 80 I=1,N
+C       CY(I) = HCI*(C2*CWRK(I)-C1*CY(I))
+        ZV = CWRK(I)
+        AA=REAL(ZV)
+        BB=AIMAG(ZV)
+        ATOL=1.0E0
+        IF (AMAX1(ABS(AA),ABS(BB)).GT.ASCLE) GO TO 75
+          ZV = ZV*CMPLX(RTOL,0.0E0)
+          ATOL = TOL
+   75   CONTINUE
+        ZV = ZV*C2*HCI
+        ZV = ZV*CMPLX(ATOL,0.0E0)
+        ZU=CY(I)
+        AA=REAL(ZU)
+        BB=AIMAG(ZU)
+        ATOL=1.0E0
+        IF (AMAX1(ABS(AA),ABS(BB)).GT.ASCLE) GO TO 85
+          ZU = ZU*CMPLX(RTOL,0.0E0)
+          ATOL = TOL
+   85   CONTINUE
+        ZU = ZU*C1*HCI
+        ZU = ZU*CMPLX(ATOL,0.0E0)
+        CY(I) = ZV - ZU
+        IF (CY(I).EQ.CMPLX(0.0E0,0.0E0) .AND. EY.EQ.0.0E0) NZ = NZ + 1
+   80 CONTINUE
+      RETURN
+   90 CONTINUE
+      C1 = EX
+      C2 = CONJG(EX)*CMPLX(EY,0.0E0)
+      GO TO 70
+  170 CONTINUE
+      NZ = 0
+      RETURN
+      END