diff libcruft/blas/ctrmm.f @ 7789:82be108cc558

First attempt at single precision tyeps * * * corrections to qrupdate single precision routines * * * prefer demotion to single over promotion to double * * * Add single precision support to log2 function * * * Trivial PROJECT file update * * * Cache optimized hermitian/transpose methods * * * Add tests for tranpose/hermitian and ChangeLog entry for new transpose code
author David Bateman <dbateman@free.fr>
date Sun, 27 Apr 2008 22:34:17 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libcruft/blas/ctrmm.f	Sun Apr 27 22:34:17 2008 +0200
@@ -0,0 +1,383 @@
+      SUBROUTINE CTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
+*     .. Scalar Arguments ..
+      COMPLEX ALPHA
+      INTEGER LDA,LDB,M,N
+      CHARACTER DIAG,SIDE,TRANSA,UPLO
+*     ..
+*     .. Array Arguments ..
+      COMPLEX A(LDA,*),B(LDB,*)
+*     ..
+*
+*  Purpose
+*  =======
+*
+*  CTRMM  performs one of the matrix-matrix operations
+*
+*     B := alpha*op( A )*B,   or   B := alpha*B*op( A )
+*
+*  where  alpha  is a scalar,  B  is an m by n matrix,  A  is a unit, or
+*  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
+*
+*     op( A ) = A   or   op( A ) = A'   or   op( A ) = conjg( A' ).
+*
+*  Arguments
+*  ==========
+*
+*  SIDE   - CHARACTER*1.
+*           On entry,  SIDE specifies whether  op( A ) multiplies B from
+*           the left or right as follows:
+*
+*              SIDE = 'L' or 'l'   B := alpha*op( A )*B.
+*
+*              SIDE = 'R' or 'r'   B := alpha*B*op( A ).
+*
+*           Unchanged on exit.
+*
+*  UPLO   - CHARACTER*1.
+*           On entry, UPLO specifies whether the matrix A is an upper or
+*           lower triangular matrix as follows:
+*
+*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
+*
+*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
+*
+*           Unchanged on exit.
+*
+*  TRANSA - CHARACTER*1.
+*           On entry, TRANSA specifies the form of op( A ) to be used in
+*           the matrix multiplication as follows:
+*
+*              TRANSA = 'N' or 'n'   op( A ) = A.
+*
+*              TRANSA = 'T' or 't'   op( A ) = A'.
+*
+*              TRANSA = 'C' or 'c'   op( A ) = conjg( A' ).
+*
+*           Unchanged on exit.
+*
+*  DIAG   - CHARACTER*1.
+*           On entry, DIAG specifies whether or not A is unit triangular
+*           as follows:
+*
+*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
+*
+*              DIAG = 'N' or 'n'   A is not assumed to be unit
+*                                  triangular.
+*
+*           Unchanged on exit.
+*
+*  M      - INTEGER.
+*           On entry, M specifies the number of rows of B. M must be at
+*           least zero.
+*           Unchanged on exit.
+*
+*  N      - INTEGER.
+*           On entry, N specifies the number of columns of B.  N must be
+*           at least zero.
+*           Unchanged on exit.
+*
+*  ALPHA  - COMPLEX         .
+*           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
+*           zero then  A is not referenced and  B need not be set before
+*           entry.
+*           Unchanged on exit.
+*
+*  A      - COMPLEX          array of DIMENSION ( LDA, k ), where k is m
+*           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.
+*           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
+*           upper triangular part of the array  A must contain the upper
+*           triangular matrix  and the strictly lower triangular part of
+*           A is not referenced.
+*           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
+*           lower triangular part of the array  A must contain the lower
+*           triangular matrix  and the strictly upper triangular part of
+*           A is not referenced.
+*           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
+*           A  are not referenced either,  but are assumed to be  unity.
+*           Unchanged on exit.
+*
+*  LDA    - INTEGER.
+*           On entry, LDA specifies the first dimension of A as declared
+*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
+*           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
+*           then LDA must be at least max( 1, n ).
+*           Unchanged on exit.
+*
+*  B      - COMPLEX          array of DIMENSION ( LDB, n ).
+*           Before entry,  the leading  m by n part of the array  B must
+*           contain the matrix  B,  and  on exit  is overwritten  by the
+*           transformed matrix.
+*
+*  LDB    - INTEGER.
+*           On entry, LDB specifies the first dimension of B as declared
+*           in  the  calling  (sub)  program.   LDB  must  be  at  least
+*           max( 1, m ).
+*           Unchanged on exit.
+*
+*
+*  Level 3 Blas routine.
+*
+*  -- Written on 8-February-1989.
+*     Jack Dongarra, Argonne National Laboratory.
+*     Iain Duff, AERE Harwell.
+*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
+*     Sven Hammarling, Numerical Algorithms Group Ltd.
+*
+*
+*     .. External Functions ..
+      LOGICAL LSAME
+      EXTERNAL LSAME
+*     ..
+*     .. External Subroutines ..
+      EXTERNAL XERBLA
+*     ..
+*     .. Intrinsic Functions ..
+      INTRINSIC CONJG,MAX
+*     ..
+*     .. Local Scalars ..
+      COMPLEX TEMP
+      INTEGER I,INFO,J,K,NROWA
+      LOGICAL LSIDE,NOCONJ,NOUNIT,UPPER
+*     ..
+*     .. Parameters ..
+      COMPLEX ONE
+      PARAMETER (ONE= (1.0E+0,0.0E+0))
+      COMPLEX ZERO
+      PARAMETER (ZERO= (0.0E+0,0.0E+0))
+*     ..
+*
+*     Test the input parameters.
+*
+      LSIDE = LSAME(SIDE,'L')
+      IF (LSIDE) THEN
+          NROWA = M
+      ELSE
+          NROWA = N
+      END IF
+      NOCONJ = LSAME(TRANSA,'T')
+      NOUNIT = LSAME(DIAG,'N')
+      UPPER = LSAME(UPLO,'U')
+*
+      INFO = 0
+      IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
+          INFO = 1
+      ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
+          INFO = 2
+      ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND.
+     +         (.NOT.LSAME(TRANSA,'T')) .AND.
+     +         (.NOT.LSAME(TRANSA,'C'))) THEN
+          INFO = 3
+      ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN
+          INFO = 4
+      ELSE IF (M.LT.0) THEN
+          INFO = 5
+      ELSE IF (N.LT.0) THEN
+          INFO = 6
+      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
+          INFO = 9
+      ELSE IF (LDB.LT.MAX(1,M)) THEN
+          INFO = 11
+      END IF
+      IF (INFO.NE.0) THEN
+          CALL XERBLA('CTRMM ',INFO)
+          RETURN
+      END IF
+*
+*     Quick return if possible.
+*
+      IF (M.EQ.0 .OR. N.EQ.0) RETURN
+*
+*     And when  alpha.eq.zero.
+*
+      IF (ALPHA.EQ.ZERO) THEN
+          DO 20 J = 1,N
+              DO 10 I = 1,M
+                  B(I,J) = ZERO
+   10         CONTINUE
+   20     CONTINUE
+          RETURN
+      END IF
+*
+*     Start the operations.
+*
+      IF (LSIDE) THEN
+          IF (LSAME(TRANSA,'N')) THEN
+*
+*           Form  B := alpha*A*B.
+*
+              IF (UPPER) THEN
+                  DO 50 J = 1,N
+                      DO 40 K = 1,M
+                          IF (B(K,J).NE.ZERO) THEN
+                              TEMP = ALPHA*B(K,J)
+                              DO 30 I = 1,K - 1
+                                  B(I,J) = B(I,J) + TEMP*A(I,K)
+   30                         CONTINUE
+                              IF (NOUNIT) TEMP = TEMP*A(K,K)
+                              B(K,J) = TEMP
+                          END IF
+   40                 CONTINUE
+   50             CONTINUE
+              ELSE
+                  DO 80 J = 1,N
+                      DO 70 K = M,1,-1
+                          IF (B(K,J).NE.ZERO) THEN
+                              TEMP = ALPHA*B(K,J)
+                              B(K,J) = TEMP
+                              IF (NOUNIT) B(K,J) = B(K,J)*A(K,K)
+                              DO 60 I = K + 1,M
+                                  B(I,J) = B(I,J) + TEMP*A(I,K)
+   60                         CONTINUE
+                          END IF
+   70                 CONTINUE
+   80             CONTINUE
+              END IF
+          ELSE
+*
+*           Form  B := alpha*A'*B   or   B := alpha*conjg( A' )*B.
+*
+              IF (UPPER) THEN
+                  DO 120 J = 1,N
+                      DO 110 I = M,1,-1
+                          TEMP = B(I,J)
+                          IF (NOCONJ) THEN
+                              IF (NOUNIT) TEMP = TEMP*A(I,I)
+                              DO 90 K = 1,I - 1
+                                  TEMP = TEMP + A(K,I)*B(K,J)
+   90                         CONTINUE
+                          ELSE
+                              IF (NOUNIT) TEMP = TEMP*CONJG(A(I,I))
+                              DO 100 K = 1,I - 1
+                                  TEMP = TEMP + CONJG(A(K,I))*B(K,J)
+  100                         CONTINUE
+                          END IF
+                          B(I,J) = ALPHA*TEMP
+  110                 CONTINUE
+  120             CONTINUE
+              ELSE
+                  DO 160 J = 1,N
+                      DO 150 I = 1,M
+                          TEMP = B(I,J)
+                          IF (NOCONJ) THEN
+                              IF (NOUNIT) TEMP = TEMP*A(I,I)
+                              DO 130 K = I + 1,M
+                                  TEMP = TEMP + A(K,I)*B(K,J)
+  130                         CONTINUE
+                          ELSE
+                              IF (NOUNIT) TEMP = TEMP*CONJG(A(I,I))
+                              DO 140 K = I + 1,M
+                                  TEMP = TEMP + CONJG(A(K,I))*B(K,J)
+  140                         CONTINUE
+                          END IF
+                          B(I,J) = ALPHA*TEMP
+  150                 CONTINUE
+  160             CONTINUE
+              END IF
+          END IF
+      ELSE
+          IF (LSAME(TRANSA,'N')) THEN
+*
+*           Form  B := alpha*B*A.
+*
+              IF (UPPER) THEN
+                  DO 200 J = N,1,-1
+                      TEMP = ALPHA
+                      IF (NOUNIT) TEMP = TEMP*A(J,J)
+                      DO 170 I = 1,M
+                          B(I,J) = TEMP*B(I,J)
+  170                 CONTINUE
+                      DO 190 K = 1,J - 1
+                          IF (A(K,J).NE.ZERO) THEN
+                              TEMP = ALPHA*A(K,J)
+                              DO 180 I = 1,M
+                                  B(I,J) = B(I,J) + TEMP*B(I,K)
+  180                         CONTINUE
+                          END IF
+  190                 CONTINUE
+  200             CONTINUE
+              ELSE
+                  DO 240 J = 1,N
+                      TEMP = ALPHA
+                      IF (NOUNIT) TEMP = TEMP*A(J,J)
+                      DO 210 I = 1,M
+                          B(I,J) = TEMP*B(I,J)
+  210                 CONTINUE
+                      DO 230 K = J + 1,N
+                          IF (A(K,J).NE.ZERO) THEN
+                              TEMP = ALPHA*A(K,J)
+                              DO 220 I = 1,M
+                                  B(I,J) = B(I,J) + TEMP*B(I,K)
+  220                         CONTINUE
+                          END IF
+  230                 CONTINUE
+  240             CONTINUE
+              END IF
+          ELSE
+*
+*           Form  B := alpha*B*A'   or   B := alpha*B*conjg( A' ).
+*
+              IF (UPPER) THEN
+                  DO 280 K = 1,N
+                      DO 260 J = 1,K - 1
+                          IF (A(J,K).NE.ZERO) THEN
+                              IF (NOCONJ) THEN
+                                  TEMP = ALPHA*A(J,K)
+                              ELSE
+                                  TEMP = ALPHA*CONJG(A(J,K))
+                              END IF
+                              DO 250 I = 1,M
+                                  B(I,J) = B(I,J) + TEMP*B(I,K)
+  250                         CONTINUE
+                          END IF
+  260                 CONTINUE
+                      TEMP = ALPHA
+                      IF (NOUNIT) THEN
+                          IF (NOCONJ) THEN
+                              TEMP = TEMP*A(K,K)
+                          ELSE
+                              TEMP = TEMP*CONJG(A(K,K))
+                          END IF
+                      END IF
+                      IF (TEMP.NE.ONE) THEN
+                          DO 270 I = 1,M
+                              B(I,K) = TEMP*B(I,K)
+  270                     CONTINUE
+                      END IF
+  280             CONTINUE
+              ELSE
+                  DO 320 K = N,1,-1
+                      DO 300 J = K + 1,N
+                          IF (A(J,K).NE.ZERO) THEN
+                              IF (NOCONJ) THEN
+                                  TEMP = ALPHA*A(J,K)
+                              ELSE
+                                  TEMP = ALPHA*CONJG(A(J,K))
+                              END IF
+                              DO 290 I = 1,M
+                                  B(I,J) = B(I,J) + TEMP*B(I,K)
+  290                         CONTINUE
+                          END IF
+  300                 CONTINUE
+                      TEMP = ALPHA
+                      IF (NOUNIT) THEN
+                          IF (NOCONJ) THEN
+                              TEMP = TEMP*A(K,K)
+                          ELSE
+                              TEMP = TEMP*CONJG(A(K,K))
+                          END IF
+                      END IF
+                      IF (TEMP.NE.ONE) THEN
+                          DO 310 I = 1,M
+                              B(I,K) = TEMP*B(I,K)
+  310                     CONTINUE
+                      END IF
+  320             CONTINUE
+              END IF
+          END IF
+      END IF
+*
+      RETURN
+*
+*     End of CTRMM .
+*
+      END