diff libcruft/lapack/cgehd2.f @ 7789:82be108cc558

First attempt at single precision tyeps * * * corrections to qrupdate single precision routines * * * prefer demotion to single over promotion to double * * * Add single precision support to log2 function * * * Trivial PROJECT file update * * * Cache optimized hermitian/transpose methods * * * Add tests for tranpose/hermitian and ChangeLog entry for new transpose code
author David Bateman <dbateman@free.fr>
date Sun, 27 Apr 2008 22:34:17 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libcruft/lapack/cgehd2.f	Sun Apr 27 22:34:17 2008 +0200
@@ -0,0 +1,148 @@
+      SUBROUTINE CGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO )
+*
+*  -- LAPACK routine (version 3.1) --
+*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+*     November 2006
+*
+*     .. Scalar Arguments ..
+      INTEGER            IHI, ILO, INFO, LDA, N
+*     ..
+*     .. Array Arguments ..
+      COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
+*     ..
+*
+*  Purpose
+*  =======
+*
+*  CGEHD2 reduces a complex general matrix A to upper Hessenberg form H
+*  by a unitary similarity transformation:  Q' * A * Q = H .
+*
+*  Arguments
+*  =========
+*
+*  N       (input) INTEGER
+*          The order of the matrix A.  N >= 0.
+*
+*  ILO     (input) INTEGER
+*  IHI     (input) INTEGER
+*          It is assumed that A is already upper triangular in rows
+*          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
+*          set by a previous call to CGEBAL; otherwise they should be
+*          set to 1 and N respectively. See Further Details.
+*          1 <= ILO <= IHI <= max(1,N).
+*
+*  A       (input/output) COMPLEX array, dimension (LDA,N)
+*          On entry, the n by n general matrix to be reduced.
+*          On exit, the upper triangle and the first subdiagonal of A
+*          are overwritten with the upper Hessenberg matrix H, and the
+*          elements below the first subdiagonal, with the array TAU,
+*          represent the unitary matrix Q as a product of elementary
+*          reflectors. See Further Details.
+*
+*  LDA     (input) INTEGER
+*          The leading dimension of the array A.  LDA >= max(1,N).
+*
+*  TAU     (output) COMPLEX array, dimension (N-1)
+*          The scalar factors of the elementary reflectors (see Further
+*          Details).
+*
+*  WORK    (workspace) COMPLEX array, dimension (N)
+*
+*  INFO    (output) INTEGER
+*          = 0:  successful exit
+*          < 0:  if INFO = -i, the i-th argument had an illegal value.
+*
+*  Further Details
+*  ===============
+*
+*  The matrix Q is represented as a product of (ihi-ilo) elementary
+*  reflectors
+*
+*     Q = H(ilo) H(ilo+1) . . . H(ihi-1).
+*
+*  Each H(i) has the form
+*
+*     H(i) = I - tau * v * v'
+*
+*  where tau is a complex scalar, and v is a complex vector with
+*  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
+*  exit in A(i+2:ihi,i), and tau in TAU(i).
+*
+*  The contents of A are illustrated by the following example, with
+*  n = 7, ilo = 2 and ihi = 6:
+*
+*  on entry,                        on exit,
+*
+*  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )
+*  (     a   a   a   a   a   a )    (      a   h   h   h   h   a )
+*  (     a   a   a   a   a   a )    (      h   h   h   h   h   h )
+*  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h )
+*  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )
+*  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )
+*  (                         a )    (                          a )
+*
+*  where a denotes an element of the original matrix A, h denotes a
+*  modified element of the upper Hessenberg matrix H, and vi denotes an
+*  element of the vector defining H(i).
+*
+*  =====================================================================
+*
+*     .. Parameters ..
+      COMPLEX            ONE
+      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ) )
+*     ..
+*     .. Local Scalars ..
+      INTEGER            I
+      COMPLEX            ALPHA
+*     ..
+*     .. External Subroutines ..
+      EXTERNAL           CLARF, CLARFG, XERBLA
+*     ..
+*     .. Intrinsic Functions ..
+      INTRINSIC          CONJG, MAX, MIN
+*     ..
+*     .. Executable Statements ..
+*
+*     Test the input parameters
+*
+      INFO = 0
+      IF( N.LT.0 ) THEN
+         INFO = -1
+      ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
+         INFO = -2
+      ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
+         INFO = -3
+      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+         INFO = -5
+      END IF
+      IF( INFO.NE.0 ) THEN
+         CALL XERBLA( 'CGEHD2', -INFO )
+         RETURN
+      END IF
+*
+      DO 10 I = ILO, IHI - 1
+*
+*        Compute elementary reflector H(i) to annihilate A(i+2:ihi,i)
+*
+         ALPHA = A( I+1, I )
+         CALL CLARFG( IHI-I, ALPHA, A( MIN( I+2, N ), I ), 1, TAU( I ) )
+         A( I+1, I ) = ONE
+*
+*        Apply H(i) to A(1:ihi,i+1:ihi) from the right
+*
+         CALL CLARF( 'Right', IHI, IHI-I, A( I+1, I ), 1, TAU( I ),
+     $               A( 1, I+1 ), LDA, WORK )
+*
+*        Apply H(i)' to A(i+1:ihi,i+1:n) from the left
+*
+         CALL CLARF( 'Left', IHI-I, N-I, A( I+1, I ), 1,
+     $               CONJG( TAU( I ) ), A( I+1, I+1 ), LDA, WORK )
+*
+         A( I+1, I ) = ALPHA
+   10 CONTINUE
+*
+      RETURN
+*
+*     End of CGEHD2
+*
+      END