diff libcruft/lapack/cgelqf.f @ 7789:82be108cc558

First attempt at single precision tyeps * * * corrections to qrupdate single precision routines * * * prefer demotion to single over promotion to double * * * Add single precision support to log2 function * * * Trivial PROJECT file update * * * Cache optimized hermitian/transpose methods * * * Add tests for tranpose/hermitian and ChangeLog entry for new transpose code
author David Bateman <dbateman@free.fr>
date Sun, 27 Apr 2008 22:34:17 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libcruft/lapack/cgelqf.f	Sun Apr 27 22:34:17 2008 +0200
@@ -0,0 +1,195 @@
+      SUBROUTINE CGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
+*
+*  -- LAPACK routine (version 3.1) --
+*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+*     November 2006
+*
+*     .. Scalar Arguments ..
+      INTEGER            INFO, LDA, LWORK, M, N
+*     ..
+*     .. Array Arguments ..
+      COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
+*     ..
+*
+*  Purpose
+*  =======
+*
+*  CGELQF computes an LQ factorization of a complex M-by-N matrix A:
+*  A = L * Q.
+*
+*  Arguments
+*  =========
+*
+*  M       (input) INTEGER
+*          The number of rows of the matrix A.  M >= 0.
+*
+*  N       (input) INTEGER
+*          The number of columns of the matrix A.  N >= 0.
+*
+*  A       (input/output) COMPLEX array, dimension (LDA,N)
+*          On entry, the M-by-N matrix A.
+*          On exit, the elements on and below the diagonal of the array
+*          contain the m-by-min(m,n) lower trapezoidal matrix L (L is
+*          lower triangular if m <= n); the elements above the diagonal,
+*          with the array TAU, represent the unitary matrix Q as a
+*          product of elementary reflectors (see Further Details).
+*
+*  LDA     (input) INTEGER
+*          The leading dimension of the array A.  LDA >= max(1,M).
+*
+*  TAU     (output) COMPLEX array, dimension (min(M,N))
+*          The scalar factors of the elementary reflectors (see Further
+*          Details).
+*
+*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
+*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+*  LWORK   (input) INTEGER
+*          The dimension of the array WORK.  LWORK >= max(1,M).
+*          For optimum performance LWORK >= M*NB, where NB is the
+*          optimal blocksize.
+*
+*          If LWORK = -1, then a workspace query is assumed; the routine
+*          only calculates the optimal size of the WORK array, returns
+*          this value as the first entry of the WORK array, and no error
+*          message related to LWORK is issued by XERBLA.
+*
+*  INFO    (output) INTEGER
+*          = 0:  successful exit
+*          < 0:  if INFO = -i, the i-th argument had an illegal value
+*
+*  Further Details
+*  ===============
+*
+*  The matrix Q is represented as a product of elementary reflectors
+*
+*     Q = H(k)' . . . H(2)' H(1)', where k = min(m,n).
+*
+*  Each H(i) has the form
+*
+*     H(i) = I - tau * v * v'
+*
+*  where tau is a complex scalar, and v is a complex vector with
+*  v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
+*  A(i,i+1:n), and tau in TAU(i).
+*
+*  =====================================================================
+*
+*     .. Local Scalars ..
+      LOGICAL            LQUERY
+      INTEGER            I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
+     $                   NBMIN, NX
+*     ..
+*     .. External Subroutines ..
+      EXTERNAL           CGELQ2, CLARFB, CLARFT, XERBLA
+*     ..
+*     .. Intrinsic Functions ..
+      INTRINSIC          MAX, MIN
+*     ..
+*     .. External Functions ..
+      INTEGER            ILAENV
+      EXTERNAL           ILAENV
+*     ..
+*     .. Executable Statements ..
+*
+*     Test the input arguments
+*
+      INFO = 0
+      NB = ILAENV( 1, 'CGELQF', ' ', M, N, -1, -1 )
+      LWKOPT = M*NB
+      WORK( 1 ) = LWKOPT
+      LQUERY = ( LWORK.EQ.-1 )
+      IF( M.LT.0 ) THEN
+         INFO = -1
+      ELSE IF( N.LT.0 ) THEN
+         INFO = -2
+      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+         INFO = -4
+      ELSE IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
+         INFO = -7
+      END IF
+      IF( INFO.NE.0 ) THEN
+         CALL XERBLA( 'CGELQF', -INFO )
+         RETURN
+      ELSE IF( LQUERY ) THEN
+         RETURN
+      END IF
+*
+*     Quick return if possible
+*
+      K = MIN( M, N )
+      IF( K.EQ.0 ) THEN
+         WORK( 1 ) = 1
+         RETURN
+      END IF
+*
+      NBMIN = 2
+      NX = 0
+      IWS = M
+      IF( NB.GT.1 .AND. NB.LT.K ) THEN
+*
+*        Determine when to cross over from blocked to unblocked code.
+*
+         NX = MAX( 0, ILAENV( 3, 'CGELQF', ' ', M, N, -1, -1 ) )
+         IF( NX.LT.K ) THEN
+*
+*           Determine if workspace is large enough for blocked code.
+*
+            LDWORK = M
+            IWS = LDWORK*NB
+            IF( LWORK.LT.IWS ) THEN
+*
+*              Not enough workspace to use optimal NB:  reduce NB and
+*              determine the minimum value of NB.
+*
+               NB = LWORK / LDWORK
+               NBMIN = MAX( 2, ILAENV( 2, 'CGELQF', ' ', M, N, -1,
+     $                 -1 ) )
+            END IF
+         END IF
+      END IF
+*
+      IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
+*
+*        Use blocked code initially
+*
+         DO 10 I = 1, K - NX, NB
+            IB = MIN( K-I+1, NB )
+*
+*           Compute the LQ factorization of the current block
+*           A(i:i+ib-1,i:n)
+*
+            CALL CGELQ2( IB, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
+     $                   IINFO )
+            IF( I+IB.LE.M ) THEN
+*
+*              Form the triangular factor of the block reflector
+*              H = H(i) H(i+1) . . . H(i+ib-1)
+*
+               CALL CLARFT( 'Forward', 'Rowwise', N-I+1, IB, A( I, I ),
+     $                      LDA, TAU( I ), WORK, LDWORK )
+*
+*              Apply H to A(i+ib:m,i:n) from the right
+*
+               CALL CLARFB( 'Right', 'No transpose', 'Forward',
+     $                      'Rowwise', M-I-IB+1, N-I+1, IB, A( I, I ),
+     $                      LDA, WORK, LDWORK, A( I+IB, I ), LDA,
+     $                      WORK( IB+1 ), LDWORK )
+            END IF
+   10    CONTINUE
+      ELSE
+         I = 1
+      END IF
+*
+*     Use unblocked code to factor the last or only block.
+*
+      IF( I.LE.K )
+     $   CALL CGELQ2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
+     $                IINFO )
+*
+      WORK( 1 ) = IWS
+      RETURN
+*
+*     End of CGELQF
+*
+      END