diff libcruft/lapack/cungl2.f @ 7789:82be108cc558

First attempt at single precision tyeps * * * corrections to qrupdate single precision routines * * * prefer demotion to single over promotion to double * * * Add single precision support to log2 function * * * Trivial PROJECT file update * * * Cache optimized hermitian/transpose methods * * * Add tests for tranpose/hermitian and ChangeLog entry for new transpose code
author David Bateman <dbateman@free.fr>
date Sun, 27 Apr 2008 22:34:17 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libcruft/lapack/cungl2.f	Sun Apr 27 22:34:17 2008 +0200
@@ -0,0 +1,136 @@
+      SUBROUTINE CUNGL2( M, N, K, A, LDA, TAU, WORK, INFO )
+*
+*  -- LAPACK routine (version 3.1) --
+*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+*     November 2006
+*
+*     .. Scalar Arguments ..
+      INTEGER            INFO, K, LDA, M, N
+*     ..
+*     .. Array Arguments ..
+      COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
+*     ..
+*
+*  Purpose
+*  =======
+*
+*  CUNGL2 generates an m-by-n complex matrix Q with orthonormal rows,
+*  which is defined as the first m rows of a product of k elementary
+*  reflectors of order n
+*
+*        Q  =  H(k)' . . . H(2)' H(1)'
+*
+*  as returned by CGELQF.
+*
+*  Arguments
+*  =========
+*
+*  M       (input) INTEGER
+*          The number of rows of the matrix Q. M >= 0.
+*
+*  N       (input) INTEGER
+*          The number of columns of the matrix Q. N >= M.
+*
+*  K       (input) INTEGER
+*          The number of elementary reflectors whose product defines the
+*          matrix Q. M >= K >= 0.
+*
+*  A       (input/output) COMPLEX array, dimension (LDA,N)
+*          On entry, the i-th row must contain the vector which defines
+*          the elementary reflector H(i), for i = 1,2,...,k, as returned
+*          by CGELQF in the first k rows of its array argument A.
+*          On exit, the m by n matrix Q.
+*
+*  LDA     (input) INTEGER
+*          The first dimension of the array A. LDA >= max(1,M).
+*
+*  TAU     (input) COMPLEX array, dimension (K)
+*          TAU(i) must contain the scalar factor of the elementary
+*          reflector H(i), as returned by CGELQF.
+*
+*  WORK    (workspace) COMPLEX array, dimension (M)
+*
+*  INFO    (output) INTEGER
+*          = 0: successful exit
+*          < 0: if INFO = -i, the i-th argument has an illegal value
+*
+*  =====================================================================
+*
+*     .. Parameters ..
+      COMPLEX            ONE, ZERO
+      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ),
+     $                   ZERO = ( 0.0E+0, 0.0E+0 ) )
+*     ..
+*     .. Local Scalars ..
+      INTEGER            I, J, L
+*     ..
+*     .. External Subroutines ..
+      EXTERNAL           CLACGV, CLARF, CSCAL, XERBLA
+*     ..
+*     .. Intrinsic Functions ..
+      INTRINSIC          CONJG, MAX
+*     ..
+*     .. Executable Statements ..
+*
+*     Test the input arguments
+*
+      INFO = 0
+      IF( M.LT.0 ) THEN
+         INFO = -1
+      ELSE IF( N.LT.M ) THEN
+         INFO = -2
+      ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
+         INFO = -3
+      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+         INFO = -5
+      END IF
+      IF( INFO.NE.0 ) THEN
+         CALL XERBLA( 'CUNGL2', -INFO )
+         RETURN
+      END IF
+*
+*     Quick return if possible
+*
+      IF( M.LE.0 )
+     $   RETURN
+*
+      IF( K.LT.M ) THEN
+*
+*        Initialise rows k+1:m to rows of the unit matrix
+*
+         DO 20 J = 1, N
+            DO 10 L = K + 1, M
+               A( L, J ) = ZERO
+   10       CONTINUE
+            IF( J.GT.K .AND. J.LE.M )
+     $         A( J, J ) = ONE
+   20    CONTINUE
+      END IF
+*
+      DO 40 I = K, 1, -1
+*
+*        Apply H(i)' to A(i:m,i:n) from the right
+*
+         IF( I.LT.N ) THEN
+            CALL CLACGV( N-I, A( I, I+1 ), LDA )
+            IF( I.LT.M ) THEN
+               A( I, I ) = ONE
+               CALL CLARF( 'Right', M-I, N-I+1, A( I, I ), LDA,
+     $                     CONJG( TAU( I ) ), A( I+1, I ), LDA, WORK )
+            END IF
+            CALL CSCAL( N-I, -TAU( I ), A( I, I+1 ), LDA )
+            CALL CLACGV( N-I, A( I, I+1 ), LDA )
+         END IF
+         A( I, I ) = ONE - CONJG( TAU( I ) )
+*
+*        Set A(i,1:i-1,i) to zero
+*
+         DO 30 L = 1, I - 1
+            A( I, L ) = ZERO
+   30    CONTINUE
+   40 CONTINUE
+      RETURN
+*
+*     End of CUNGL2
+*
+      END