diff libcruft/lapack/slarz.f @ 7789:82be108cc558

First attempt at single precision tyeps * * * corrections to qrupdate single precision routines * * * prefer demotion to single over promotion to double * * * Add single precision support to log2 function * * * Trivial PROJECT file update * * * Cache optimized hermitian/transpose methods * * * Add tests for tranpose/hermitian and ChangeLog entry for new transpose code
author David Bateman <dbateman@free.fr>
date Sun, 27 Apr 2008 22:34:17 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libcruft/lapack/slarz.f	Sun Apr 27 22:34:17 2008 +0200
@@ -0,0 +1,152 @@
+      SUBROUTINE SLARZ( SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK )
+*
+*  -- LAPACK routine (version 3.1) --
+*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+*     November 2006
+*
+*     .. Scalar Arguments ..
+      CHARACTER          SIDE
+      INTEGER            INCV, L, LDC, M, N
+      REAL               TAU
+*     ..
+*     .. Array Arguments ..
+      REAL               C( LDC, * ), V( * ), WORK( * )
+*     ..
+*
+*  Purpose
+*  =======
+*
+*  SLARZ applies a real elementary reflector H to a real M-by-N
+*  matrix C, from either the left or the right. H is represented in the
+*  form
+*
+*        H = I - tau * v * v'
+*
+*  where tau is a real scalar and v is a real vector.
+*
+*  If tau = 0, then H is taken to be the unit matrix.
+*
+*
+*  H is a product of k elementary reflectors as returned by STZRZF.
+*
+*  Arguments
+*  =========
+*
+*  SIDE    (input) CHARACTER*1
+*          = 'L': form  H * C
+*          = 'R': form  C * H
+*
+*  M       (input) INTEGER
+*          The number of rows of the matrix C.
+*
+*  N       (input) INTEGER
+*          The number of columns of the matrix C.
+*
+*  L       (input) INTEGER
+*          The number of entries of the vector V containing
+*          the meaningful part of the Householder vectors.
+*          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
+*
+*  V       (input) REAL array, dimension (1+(L-1)*abs(INCV))
+*          The vector v in the representation of H as returned by
+*          STZRZF. V is not used if TAU = 0.
+*
+*  INCV    (input) INTEGER
+*          The increment between elements of v. INCV <> 0.
+*
+*  TAU     (input) REAL
+*          The value tau in the representation of H.
+*
+*  C       (input/output) REAL array, dimension (LDC,N)
+*          On entry, the M-by-N matrix C.
+*          On exit, C is overwritten by the matrix H * C if SIDE = 'L',
+*          or C * H if SIDE = 'R'.
+*
+*  LDC     (input) INTEGER
+*          The leading dimension of the array C. LDC >= max(1,M).
+*
+*  WORK    (workspace) REAL array, dimension
+*                         (N) if SIDE = 'L'
+*                      or (M) if SIDE = 'R'
+*
+*  Further Details
+*  ===============
+*
+*  Based on contributions by
+*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
+*
+*  =====================================================================
+*
+*     .. Parameters ..
+      REAL               ONE, ZERO
+      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
+*     ..
+*     .. External Subroutines ..
+      EXTERNAL           SAXPY, SCOPY, SGEMV, SGER
+*     ..
+*     .. External Functions ..
+      LOGICAL            LSAME
+      EXTERNAL           LSAME
+*     ..
+*     .. Executable Statements ..
+*
+      IF( LSAME( SIDE, 'L' ) ) THEN
+*
+*        Form  H * C
+*
+         IF( TAU.NE.ZERO ) THEN
+*
+*           w( 1:n ) = C( 1, 1:n )
+*
+            CALL SCOPY( N, C, LDC, WORK, 1 )
+*
+*           w( 1:n ) = w( 1:n ) + C( m-l+1:m, 1:n )' * v( 1:l )
+*
+            CALL SGEMV( 'Transpose', L, N, ONE, C( M-L+1, 1 ), LDC, V,
+     $                  INCV, ONE, WORK, 1 )
+*
+*           C( 1, 1:n ) = C( 1, 1:n ) - tau * w( 1:n )
+*
+            CALL SAXPY( N, -TAU, WORK, 1, C, LDC )
+*
+*           C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
+*                               tau * v( 1:l ) * w( 1:n )'
+*
+            CALL SGER( L, N, -TAU, V, INCV, WORK, 1, C( M-L+1, 1 ),
+     $                 LDC )
+         END IF
+*
+      ELSE
+*
+*        Form  C * H
+*
+         IF( TAU.NE.ZERO ) THEN
+*
+*           w( 1:m ) = C( 1:m, 1 )
+*
+            CALL SCOPY( M, C, 1, WORK, 1 )
+*
+*           w( 1:m ) = w( 1:m ) + C( 1:m, n-l+1:n, 1:n ) * v( 1:l )
+*
+            CALL SGEMV( 'No transpose', M, L, ONE, C( 1, N-L+1 ), LDC,
+     $                  V, INCV, ONE, WORK, 1 )
+*
+*           C( 1:m, 1 ) = C( 1:m, 1 ) - tau * w( 1:m )
+*
+            CALL SAXPY( M, -TAU, WORK, 1, C, 1 )
+*
+*           C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
+*                               tau * w( 1:m ) * v( 1:l )'
+*
+            CALL SGER( M, L, -TAU, WORK, 1, V, INCV, C( 1, N-L+1 ),
+     $                 LDC )
+*
+         END IF
+*
+      END IF
+*
+      RETURN
+*
+*     End of SLARZ
+*
+      END