diff libcruft/lapack/slasda.f @ 7789:82be108cc558

First attempt at single precision tyeps * * * corrections to qrupdate single precision routines * * * prefer demotion to single over promotion to double * * * Add single precision support to log2 function * * * Trivial PROJECT file update * * * Cache optimized hermitian/transpose methods * * * Add tests for tranpose/hermitian and ChangeLog entry for new transpose code
author David Bateman <dbateman@free.fr>
date Sun, 27 Apr 2008 22:34:17 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libcruft/lapack/slasda.f	Sun Apr 27 22:34:17 2008 +0200
@@ -0,0 +1,389 @@
+      SUBROUTINE SLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K,
+     $                   DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL,
+     $                   PERM, GIVNUM, C, S, WORK, IWORK, INFO )
+*
+*  -- LAPACK auxiliary routine (version 3.1) --
+*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+*     November 2006
+*
+*     .. Scalar Arguments ..
+      INTEGER            ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE
+*     ..
+*     .. Array Arguments ..
+      INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
+     $                   K( * ), PERM( LDGCOL, * )
+      REAL               C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ),
+     $                   E( * ), GIVNUM( LDU, * ), POLES( LDU, * ),
+     $                   S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ),
+     $                   Z( LDU, * )
+*     ..
+*
+*  Purpose
+*  =======
+*
+*  Using a divide and conquer approach, SLASDA computes the singular
+*  value decomposition (SVD) of a real upper bidiagonal N-by-M matrix
+*  B with diagonal D and offdiagonal E, where M = N + SQRE. The
+*  algorithm computes the singular values in the SVD B = U * S * VT.
+*  The orthogonal matrices U and VT are optionally computed in
+*  compact form.
+*
+*  A related subroutine, SLASD0, computes the singular values and
+*  the singular vectors in explicit form.
+*
+*  Arguments
+*  =========
+*
+*  ICOMPQ (input) INTEGER
+*         Specifies whether singular vectors are to be computed
+*         in compact form, as follows
+*         = 0: Compute singular values only.
+*         = 1: Compute singular vectors of upper bidiagonal
+*              matrix in compact form.
+*
+*  SMLSIZ (input) INTEGER
+*         The maximum size of the subproblems at the bottom of the
+*         computation tree.
+*
+*  N      (input) INTEGER
+*         The row dimension of the upper bidiagonal matrix. This is
+*         also the dimension of the main diagonal array D.
+*
+*  SQRE   (input) INTEGER
+*         Specifies the column dimension of the bidiagonal matrix.
+*         = 0: The bidiagonal matrix has column dimension M = N;
+*         = 1: The bidiagonal matrix has column dimension M = N + 1.
+*
+*  D      (input/output) REAL array, dimension ( N )
+*         On entry D contains the main diagonal of the bidiagonal
+*         matrix. On exit D, if INFO = 0, contains its singular values.
+*
+*  E      (input) REAL array, dimension ( M-1 )
+*         Contains the subdiagonal entries of the bidiagonal matrix.
+*         On exit, E has been destroyed.
+*
+*  U      (output) REAL array,
+*         dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced
+*         if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left
+*         singular vector matrices of all subproblems at the bottom
+*         level.
+*
+*  LDU    (input) INTEGER, LDU = > N.
+*         The leading dimension of arrays U, VT, DIFL, DIFR, POLES,
+*         GIVNUM, and Z.
+*
+*  VT     (output) REAL array,
+*         dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced
+*         if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT' contains the right
+*         singular vector matrices of all subproblems at the bottom
+*         level.
+*
+*  K      (output) INTEGER array, dimension ( N ) 
+*         if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0.
+*         If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th
+*         secular equation on the computation tree.
+*
+*  DIFL   (output) REAL array, dimension ( LDU, NLVL ),
+*         where NLVL = floor(log_2 (N/SMLSIZ))).
+*
+*  DIFR   (output) REAL array,
+*                  dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and
+*                  dimension ( N ) if ICOMPQ = 0.
+*         If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1)
+*         record distances between singular values on the I-th
+*         level and singular values on the (I -1)-th level, and
+*         DIFR(1:N, 2 * I ) contains the normalizing factors for
+*         the right singular vector matrix. See SLASD8 for details.
+*
+*  Z      (output) REAL array,
+*                  dimension ( LDU, NLVL ) if ICOMPQ = 1 and
+*                  dimension ( N ) if ICOMPQ = 0.
+*         The first K elements of Z(1, I) contain the components of
+*         the deflation-adjusted updating row vector for subproblems
+*         on the I-th level.
+*
+*  POLES  (output) REAL array,
+*         dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced
+*         if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and
+*         POLES(1, 2*I) contain  the new and old singular values
+*         involved in the secular equations on the I-th level.
+*
+*  GIVPTR (output) INTEGER array,
+*         dimension ( N ) if ICOMPQ = 1, and not referenced if
+*         ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records
+*         the number of Givens rotations performed on the I-th
+*         problem on the computation tree.
+*
+*  GIVCOL (output) INTEGER array,
+*         dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not
+*         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
+*         GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations
+*         of Givens rotations performed on the I-th level on the
+*         computation tree.
+*
+*  LDGCOL (input) INTEGER, LDGCOL = > N.
+*         The leading dimension of arrays GIVCOL and PERM.
+*
+*  PERM   (output) INTEGER array, dimension ( LDGCOL, NLVL ) 
+*         if ICOMPQ = 1, and not referenced
+*         if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records
+*         permutations done on the I-th level of the computation tree.
+*
+*  GIVNUM (output) REAL array,
+*         dimension ( LDU,  2 * NLVL ) if ICOMPQ = 1, and not
+*         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
+*         GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S-
+*         values of Givens rotations performed on the I-th level on
+*         the computation tree.
+*
+*  C      (output) REAL array,
+*         dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0.
+*         If ICOMPQ = 1 and the I-th subproblem is not square, on exit,
+*         C( I ) contains the C-value of a Givens rotation related to
+*         the right null space of the I-th subproblem.
+*
+*  S      (output) REAL array, dimension ( N ) if
+*         ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1
+*         and the I-th subproblem is not square, on exit, S( I )
+*         contains the S-value of a Givens rotation related to
+*         the right null space of the I-th subproblem.
+*
+*  WORK   (workspace) REAL array, dimension
+*         (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).
+*
+*  IWORK  (workspace) INTEGER array, dimension (7*N).
+*
+*  INFO   (output) INTEGER
+*          = 0:  successful exit.
+*          < 0:  if INFO = -i, the i-th argument had an illegal value.
+*          > 0:  if INFO = 1, an singular value did not converge
+*
+*  Further Details
+*  ===============
+*
+*  Based on contributions by
+*     Ming Gu and Huan Ren, Computer Science Division, University of
+*     California at Berkeley, USA
+*
+*  =====================================================================
+*
+*     .. Parameters ..
+      REAL               ZERO, ONE
+      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
+*     ..
+*     .. Local Scalars ..
+      INTEGER            I, I1, IC, IDXQ, IDXQI, IM1, INODE, ITEMP, IWK,
+     $                   J, LF, LL, LVL, LVL2, M, NCC, ND, NDB1, NDIML,
+     $                   NDIMR, NL, NLF, NLP1, NLVL, NR, NRF, NRP1, NRU,
+     $                   NWORK1, NWORK2, SMLSZP, SQREI, VF, VFI, VL, VLI
+      REAL               ALPHA, BETA
+*     ..
+*     .. External Subroutines ..
+      EXTERNAL           SCOPY, SLASD6, SLASDQ, SLASDT, SLASET, XERBLA
+*     ..
+*     .. Executable Statements ..
+*
+*     Test the input parameters.
+*
+      INFO = 0
+*
+      IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
+         INFO = -1
+      ELSE IF( SMLSIZ.LT.3 ) THEN
+         INFO = -2
+      ELSE IF( N.LT.0 ) THEN
+         INFO = -3
+      ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
+         INFO = -4
+      ELSE IF( LDU.LT.( N+SQRE ) ) THEN
+         INFO = -8
+      ELSE IF( LDGCOL.LT.N ) THEN
+         INFO = -17
+      END IF
+      IF( INFO.NE.0 ) THEN
+         CALL XERBLA( 'SLASDA', -INFO )
+         RETURN
+      END IF
+*
+      M = N + SQRE
+*
+*     If the input matrix is too small, call SLASDQ to find the SVD.
+*
+      IF( N.LE.SMLSIZ ) THEN
+         IF( ICOMPQ.EQ.0 ) THEN
+            CALL SLASDQ( 'U', SQRE, N, 0, 0, 0, D, E, VT, LDU, U, LDU,
+     $                   U, LDU, WORK, INFO )
+         ELSE
+            CALL SLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDU, U, LDU,
+     $                   U, LDU, WORK, INFO )
+         END IF
+         RETURN
+      END IF
+*
+*     Book-keeping and  set up the computation tree.
+*
+      INODE = 1
+      NDIML = INODE + N
+      NDIMR = NDIML + N
+      IDXQ = NDIMR + N
+      IWK = IDXQ + N
+*
+      NCC = 0
+      NRU = 0
+*
+      SMLSZP = SMLSIZ + 1
+      VF = 1
+      VL = VF + M
+      NWORK1 = VL + M
+      NWORK2 = NWORK1 + SMLSZP*SMLSZP
+*
+      CALL SLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
+     $             IWORK( NDIMR ), SMLSIZ )
+*
+*     for the nodes on bottom level of the tree, solve
+*     their subproblems by SLASDQ.
+*
+      NDB1 = ( ND+1 ) / 2
+      DO 30 I = NDB1, ND
+*
+*        IC : center row of each node
+*        NL : number of rows of left  subproblem
+*        NR : number of rows of right subproblem
+*        NLF: starting row of the left   subproblem
+*        NRF: starting row of the right  subproblem
+*
+         I1 = I - 1
+         IC = IWORK( INODE+I1 )
+         NL = IWORK( NDIML+I1 )
+         NLP1 = NL + 1
+         NR = IWORK( NDIMR+I1 )
+         NLF = IC - NL
+         NRF = IC + 1
+         IDXQI = IDXQ + NLF - 2
+         VFI = VF + NLF - 1
+         VLI = VL + NLF - 1
+         SQREI = 1
+         IF( ICOMPQ.EQ.0 ) THEN
+            CALL SLASET( 'A', NLP1, NLP1, ZERO, ONE, WORK( NWORK1 ),
+     $                   SMLSZP )
+            CALL SLASDQ( 'U', SQREI, NL, NLP1, NRU, NCC, D( NLF ),
+     $                   E( NLF ), WORK( NWORK1 ), SMLSZP,
+     $                   WORK( NWORK2 ), NL, WORK( NWORK2 ), NL,
+     $                   WORK( NWORK2 ), INFO )
+            ITEMP = NWORK1 + NL*SMLSZP
+            CALL SCOPY( NLP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
+            CALL SCOPY( NLP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
+         ELSE
+            CALL SLASET( 'A', NL, NL, ZERO, ONE, U( NLF, 1 ), LDU )
+            CALL SLASET( 'A', NLP1, NLP1, ZERO, ONE, VT( NLF, 1 ), LDU )
+            CALL SLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ),
+     $                   E( NLF ), VT( NLF, 1 ), LDU, U( NLF, 1 ), LDU,
+     $                   U( NLF, 1 ), LDU, WORK( NWORK1 ), INFO )
+            CALL SCOPY( NLP1, VT( NLF, 1 ), 1, WORK( VFI ), 1 )
+            CALL SCOPY( NLP1, VT( NLF, NLP1 ), 1, WORK( VLI ), 1 )
+         END IF
+         IF( INFO.NE.0 ) THEN
+            RETURN
+         END IF
+         DO 10 J = 1, NL
+            IWORK( IDXQI+J ) = J
+   10    CONTINUE
+         IF( ( I.EQ.ND ) .AND. ( SQRE.EQ.0 ) ) THEN
+            SQREI = 0
+         ELSE
+            SQREI = 1
+         END IF
+         IDXQI = IDXQI + NLP1
+         VFI = VFI + NLP1
+         VLI = VLI + NLP1
+         NRP1 = NR + SQREI
+         IF( ICOMPQ.EQ.0 ) THEN
+            CALL SLASET( 'A', NRP1, NRP1, ZERO, ONE, WORK( NWORK1 ),
+     $                   SMLSZP )
+            CALL SLASDQ( 'U', SQREI, NR, NRP1, NRU, NCC, D( NRF ),
+     $                   E( NRF ), WORK( NWORK1 ), SMLSZP,
+     $                   WORK( NWORK2 ), NR, WORK( NWORK2 ), NR,
+     $                   WORK( NWORK2 ), INFO )
+            ITEMP = NWORK1 + ( NRP1-1 )*SMLSZP
+            CALL SCOPY( NRP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
+            CALL SCOPY( NRP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
+         ELSE
+            CALL SLASET( 'A', NR, NR, ZERO, ONE, U( NRF, 1 ), LDU )
+            CALL SLASET( 'A', NRP1, NRP1, ZERO, ONE, VT( NRF, 1 ), LDU )
+            CALL SLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ),
+     $                   E( NRF ), VT( NRF, 1 ), LDU, U( NRF, 1 ), LDU,
+     $                   U( NRF, 1 ), LDU, WORK( NWORK1 ), INFO )
+            CALL SCOPY( NRP1, VT( NRF, 1 ), 1, WORK( VFI ), 1 )
+            CALL SCOPY( NRP1, VT( NRF, NRP1 ), 1, WORK( VLI ), 1 )
+         END IF
+         IF( INFO.NE.0 ) THEN
+            RETURN
+         END IF
+         DO 20 J = 1, NR
+            IWORK( IDXQI+J ) = J
+   20    CONTINUE
+   30 CONTINUE
+*
+*     Now conquer each subproblem bottom-up.
+*
+      J = 2**NLVL
+      DO 50 LVL = NLVL, 1, -1
+         LVL2 = LVL*2 - 1
+*
+*        Find the first node LF and last node LL on
+*        the current level LVL.
+*
+         IF( LVL.EQ.1 ) THEN
+            LF = 1
+            LL = 1
+         ELSE
+            LF = 2**( LVL-1 )
+            LL = 2*LF - 1
+         END IF
+         DO 40 I = LF, LL
+            IM1 = I - 1
+            IC = IWORK( INODE+IM1 )
+            NL = IWORK( NDIML+IM1 )
+            NR = IWORK( NDIMR+IM1 )
+            NLF = IC - NL
+            NRF = IC + 1
+            IF( I.EQ.LL ) THEN
+               SQREI = SQRE
+            ELSE
+               SQREI = 1
+            END IF
+            VFI = VF + NLF - 1
+            VLI = VL + NLF - 1
+            IDXQI = IDXQ + NLF - 1
+            ALPHA = D( IC )
+            BETA = E( IC )
+            IF( ICOMPQ.EQ.0 ) THEN
+               CALL SLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ),
+     $                      WORK( VFI ), WORK( VLI ), ALPHA, BETA,
+     $                      IWORK( IDXQI ), PERM, GIVPTR( 1 ), GIVCOL,
+     $                      LDGCOL, GIVNUM, LDU, POLES, DIFL, DIFR, Z,
+     $                      K( 1 ), C( 1 ), S( 1 ), WORK( NWORK1 ),
+     $                      IWORK( IWK ), INFO )
+            ELSE
+               J = J - 1
+               CALL SLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ),
+     $                      WORK( VFI ), WORK( VLI ), ALPHA, BETA,
+     $                      IWORK( IDXQI ), PERM( NLF, LVL ),
+     $                      GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
+     $                      GIVNUM( NLF, LVL2 ), LDU,
+     $                      POLES( NLF, LVL2 ), DIFL( NLF, LVL ),
+     $                      DIFR( NLF, LVL2 ), Z( NLF, LVL ), K( J ),
+     $                      C( J ), S( J ), WORK( NWORK1 ),
+     $                      IWORK( IWK ), INFO )
+            END IF
+            IF( INFO.NE.0 ) THEN
+               RETURN
+            END IF
+   40    CONTINUE
+   50 CONTINUE
+*
+      RETURN
+*
+*     End of SLASDA
+*
+      END