diff libcruft/lapack/zlals0.f @ 7072:b48d486f641d

[project @ 2007-10-26 15:52:57 by jwe]
author jwe
date Fri, 26 Oct 2007 15:52:58 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libcruft/lapack/zlals0.f	Fri Oct 26 15:52:58 2007 +0000
@@ -0,0 +1,433 @@
+      SUBROUTINE ZLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX,
+     $                   PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
+     $                   POLES, DIFL, DIFR, Z, K, C, S, RWORK, INFO )
+*
+*  -- LAPACK routine (version 3.1) --
+*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+*     November 2006
+*
+*     .. Scalar Arguments ..
+      INTEGER            GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL,
+     $                   LDGNUM, NL, NR, NRHS, SQRE
+      DOUBLE PRECISION   C, S
+*     ..
+*     .. Array Arguments ..
+      INTEGER            GIVCOL( LDGCOL, * ), PERM( * )
+      DOUBLE PRECISION   DIFL( * ), DIFR( LDGNUM, * ),
+     $                   GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ),
+     $                   RWORK( * ), Z( * )
+      COMPLEX*16         B( LDB, * ), BX( LDBX, * )
+*     ..
+*
+*  Purpose
+*  =======
+*
+*  ZLALS0 applies back the multiplying factors of either the left or the
+*  right singular vector matrix of a diagonal matrix appended by a row
+*  to the right hand side matrix B in solving the least squares problem
+*  using the divide-and-conquer SVD approach.
+*
+*  For the left singular vector matrix, three types of orthogonal
+*  matrices are involved:
+*
+*  (1L) Givens rotations: the number of such rotations is GIVPTR; the
+*       pairs of columns/rows they were applied to are stored in GIVCOL;
+*       and the C- and S-values of these rotations are stored in GIVNUM.
+*
+*  (2L) Permutation. The (NL+1)-st row of B is to be moved to the first
+*       row, and for J=2:N, PERM(J)-th row of B is to be moved to the
+*       J-th row.
+*
+*  (3L) The left singular vector matrix of the remaining matrix.
+*
+*  For the right singular vector matrix, four types of orthogonal
+*  matrices are involved:
+*
+*  (1R) The right singular vector matrix of the remaining matrix.
+*
+*  (2R) If SQRE = 1, one extra Givens rotation to generate the right
+*       null space.
+*
+*  (3R) The inverse transformation of (2L).
+*
+*  (4R) The inverse transformation of (1L).
+*
+*  Arguments
+*  =========
+*
+*  ICOMPQ (input) INTEGER
+*         Specifies whether singular vectors are to be computed in
+*         factored form:
+*         = 0: Left singular vector matrix.
+*         = 1: Right singular vector matrix.
+*
+*  NL     (input) INTEGER
+*         The row dimension of the upper block. NL >= 1.
+*
+*  NR     (input) INTEGER
+*         The row dimension of the lower block. NR >= 1.
+*
+*  SQRE   (input) INTEGER
+*         = 0: the lower block is an NR-by-NR square matrix.
+*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
+*
+*         The bidiagonal matrix has row dimension N = NL + NR + 1,
+*         and column dimension M = N + SQRE.
+*
+*  NRHS   (input) INTEGER
+*         The number of columns of B and BX. NRHS must be at least 1.
+*
+*  B      (input/output) COMPLEX*16 array, dimension ( LDB, NRHS )
+*         On input, B contains the right hand sides of the least
+*         squares problem in rows 1 through M. On output, B contains
+*         the solution X in rows 1 through N.
+*
+*  LDB    (input) INTEGER
+*         The leading dimension of B. LDB must be at least
+*         max(1,MAX( M, N ) ).
+*
+*  BX     (workspace) COMPLEX*16 array, dimension ( LDBX, NRHS )
+*
+*  LDBX   (input) INTEGER
+*         The leading dimension of BX.
+*
+*  PERM   (input) INTEGER array, dimension ( N )
+*         The permutations (from deflation and sorting) applied
+*         to the two blocks.
+*
+*  GIVPTR (input) INTEGER
+*         The number of Givens rotations which took place in this
+*         subproblem.
+*
+*  GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 )
+*         Each pair of numbers indicates a pair of rows/columns
+*         involved in a Givens rotation.
+*
+*  LDGCOL (input) INTEGER
+*         The leading dimension of GIVCOL, must be at least N.
+*
+*  GIVNUM (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
+*         Each number indicates the C or S value used in the
+*         corresponding Givens rotation.
+*
+*  LDGNUM (input) INTEGER
+*         The leading dimension of arrays DIFR, POLES and
+*         GIVNUM, must be at least K.
+*
+*  POLES  (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
+*         On entry, POLES(1:K, 1) contains the new singular
+*         values obtained from solving the secular equation, and
+*         POLES(1:K, 2) is an array containing the poles in the secular
+*         equation.
+*
+*  DIFL   (input) DOUBLE PRECISION array, dimension ( K ).
+*         On entry, DIFL(I) is the distance between I-th updated
+*         (undeflated) singular value and the I-th (undeflated) old
+*         singular value.
+*
+*  DIFR   (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ).
+*         On entry, DIFR(I, 1) contains the distances between I-th
+*         updated (undeflated) singular value and the I+1-th
+*         (undeflated) old singular value. And DIFR(I, 2) is the
+*         normalizing factor for the I-th right singular vector.
+*
+*  Z      (input) DOUBLE PRECISION array, dimension ( K )
+*         Contain the components of the deflation-adjusted updating row
+*         vector.
+*
+*  K      (input) INTEGER
+*         Contains the dimension of the non-deflated matrix,
+*         This is the order of the related secular equation. 1 <= K <=N.
+*
+*  C      (input) DOUBLE PRECISION
+*         C contains garbage if SQRE =0 and the C-value of a Givens
+*         rotation related to the right null space if SQRE = 1.
+*
+*  S      (input) DOUBLE PRECISION
+*         S contains garbage if SQRE =0 and the S-value of a Givens
+*         rotation related to the right null space if SQRE = 1.
+*
+*  RWORK  (workspace) DOUBLE PRECISION array, dimension
+*         ( K*(1+NRHS) + 2*NRHS )
+*
+*  INFO   (output) INTEGER
+*          = 0:  successful exit.
+*          < 0:  if INFO = -i, the i-th argument had an illegal value.
+*
+*  Further Details
+*  ===============
+*
+*  Based on contributions by
+*     Ming Gu and Ren-Cang Li, Computer Science Division, University of
+*       California at Berkeley, USA
+*     Osni Marques, LBNL/NERSC, USA
+*
+*  =====================================================================
+*
+*     .. Parameters ..
+      DOUBLE PRECISION   ONE, ZERO, NEGONE
+      PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0, NEGONE = -1.0D0 )
+*     ..
+*     .. Local Scalars ..
+      INTEGER            I, J, JCOL, JROW, M, N, NLP1
+      DOUBLE PRECISION   DIFLJ, DIFRJ, DJ, DSIGJ, DSIGJP, TEMP
+*     ..
+*     .. External Subroutines ..
+      EXTERNAL           DGEMV, XERBLA, ZCOPY, ZDROT, ZDSCAL, ZLACPY,
+     $                   ZLASCL
+*     ..
+*     .. External Functions ..
+      DOUBLE PRECISION   DLAMC3, DNRM2
+      EXTERNAL           DLAMC3, DNRM2
+*     ..
+*     .. Intrinsic Functions ..
+      INTRINSIC          DBLE, DCMPLX, DIMAG, MAX
+*     ..
+*     .. Executable Statements ..
+*
+*     Test the input parameters.
+*
+      INFO = 0
+*
+      IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
+         INFO = -1
+      ELSE IF( NL.LT.1 ) THEN
+         INFO = -2
+      ELSE IF( NR.LT.1 ) THEN
+         INFO = -3
+      ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
+         INFO = -4
+      END IF
+*
+      N = NL + NR + 1
+*
+      IF( NRHS.LT.1 ) THEN
+         INFO = -5
+      ELSE IF( LDB.LT.N ) THEN
+         INFO = -7
+      ELSE IF( LDBX.LT.N ) THEN
+         INFO = -9
+      ELSE IF( GIVPTR.LT.0 ) THEN
+         INFO = -11
+      ELSE IF( LDGCOL.LT.N ) THEN
+         INFO = -13
+      ELSE IF( LDGNUM.LT.N ) THEN
+         INFO = -15
+      ELSE IF( K.LT.1 ) THEN
+         INFO = -20
+      END IF
+      IF( INFO.NE.0 ) THEN
+         CALL XERBLA( 'ZLALS0', -INFO )
+         RETURN
+      END IF
+*
+      M = N + SQRE
+      NLP1 = NL + 1
+*
+      IF( ICOMPQ.EQ.0 ) THEN
+*
+*        Apply back orthogonal transformations from the left.
+*
+*        Step (1L): apply back the Givens rotations performed.
+*
+         DO 10 I = 1, GIVPTR
+            CALL ZDROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB,
+     $                  B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ),
+     $                  GIVNUM( I, 1 ) )
+   10    CONTINUE
+*
+*        Step (2L): permute rows of B.
+*
+         CALL ZCOPY( NRHS, B( NLP1, 1 ), LDB, BX( 1, 1 ), LDBX )
+         DO 20 I = 2, N
+            CALL ZCOPY( NRHS, B( PERM( I ), 1 ), LDB, BX( I, 1 ), LDBX )
+   20    CONTINUE
+*
+*        Step (3L): apply the inverse of the left singular vector
+*        matrix to BX.
+*
+         IF( K.EQ.1 ) THEN
+            CALL ZCOPY( NRHS, BX, LDBX, B, LDB )
+            IF( Z( 1 ).LT.ZERO ) THEN
+               CALL ZDSCAL( NRHS, NEGONE, B, LDB )
+            END IF
+         ELSE
+            DO 100 J = 1, K
+               DIFLJ = DIFL( J )
+               DJ = POLES( J, 1 )
+               DSIGJ = -POLES( J, 2 )
+               IF( J.LT.K ) THEN
+                  DIFRJ = -DIFR( J, 1 )
+                  DSIGJP = -POLES( J+1, 2 )
+               END IF
+               IF( ( Z( J ).EQ.ZERO ) .OR. ( POLES( J, 2 ).EQ.ZERO ) )
+     $              THEN
+                  RWORK( J ) = ZERO
+               ELSE
+                  RWORK( J ) = -POLES( J, 2 )*Z( J ) / DIFLJ /
+     $                         ( POLES( J, 2 )+DJ )
+               END IF
+               DO 30 I = 1, J - 1
+                  IF( ( Z( I ).EQ.ZERO ) .OR.
+     $                ( POLES( I, 2 ).EQ.ZERO ) ) THEN
+                     RWORK( I ) = ZERO
+                  ELSE
+                     RWORK( I ) = POLES( I, 2 )*Z( I ) /
+     $                            ( DLAMC3( POLES( I, 2 ), DSIGJ )-
+     $                            DIFLJ ) / ( POLES( I, 2 )+DJ )
+                  END IF
+   30          CONTINUE
+               DO 40 I = J + 1, K
+                  IF( ( Z( I ).EQ.ZERO ) .OR.
+     $                ( POLES( I, 2 ).EQ.ZERO ) ) THEN
+                     RWORK( I ) = ZERO
+                  ELSE
+                     RWORK( I ) = POLES( I, 2 )*Z( I ) /
+     $                            ( DLAMC3( POLES( I, 2 ), DSIGJP )+
+     $                            DIFRJ ) / ( POLES( I, 2 )+DJ )
+                  END IF
+   40          CONTINUE
+               RWORK( 1 ) = NEGONE
+               TEMP = DNRM2( K, RWORK, 1 )
+*
+*              Since B and BX are complex, the following call to DGEMV
+*              is performed in two steps (real and imaginary parts).
+*
+*              CALL DGEMV( 'T', K, NRHS, ONE, BX, LDBX, WORK, 1, ZERO,
+*    $                     B( J, 1 ), LDB )
+*
+               I = K + NRHS*2
+               DO 60 JCOL = 1, NRHS
+                  DO 50 JROW = 1, K
+                     I = I + 1
+                     RWORK( I ) = DBLE( BX( JROW, JCOL ) )
+   50             CONTINUE
+   60          CONTINUE
+               CALL DGEMV( 'T', K, NRHS, ONE, RWORK( 1+K+NRHS*2 ), K,
+     $                     RWORK( 1 ), 1, ZERO, RWORK( 1+K ), 1 )
+               I = K + NRHS*2
+               DO 80 JCOL = 1, NRHS
+                  DO 70 JROW = 1, K
+                     I = I + 1
+                     RWORK( I ) = DIMAG( BX( JROW, JCOL ) )
+   70             CONTINUE
+   80          CONTINUE
+               CALL DGEMV( 'T', K, NRHS, ONE, RWORK( 1+K+NRHS*2 ), K,
+     $                     RWORK( 1 ), 1, ZERO, RWORK( 1+K+NRHS ), 1 )
+               DO 90 JCOL = 1, NRHS
+                  B( J, JCOL ) = DCMPLX( RWORK( JCOL+K ),
+     $                           RWORK( JCOL+K+NRHS ) )
+   90          CONTINUE
+               CALL ZLASCL( 'G', 0, 0, TEMP, ONE, 1, NRHS, B( J, 1 ),
+     $                      LDB, INFO )
+  100       CONTINUE
+         END IF
+*
+*        Move the deflated rows of BX to B also.
+*
+         IF( K.LT.MAX( M, N ) )
+     $      CALL ZLACPY( 'A', N-K, NRHS, BX( K+1, 1 ), LDBX,
+     $                   B( K+1, 1 ), LDB )
+      ELSE
+*
+*        Apply back the right orthogonal transformations.
+*
+*        Step (1R): apply back the new right singular vector matrix
+*        to B.
+*
+         IF( K.EQ.1 ) THEN
+            CALL ZCOPY( NRHS, B, LDB, BX, LDBX )
+         ELSE
+            DO 180 J = 1, K
+               DSIGJ = POLES( J, 2 )
+               IF( Z( J ).EQ.ZERO ) THEN
+                  RWORK( J ) = ZERO
+               ELSE
+                  RWORK( J ) = -Z( J ) / DIFL( J ) /
+     $                         ( DSIGJ+POLES( J, 1 ) ) / DIFR( J, 2 )
+               END IF
+               DO 110 I = 1, J - 1
+                  IF( Z( J ).EQ.ZERO ) THEN
+                     RWORK( I ) = ZERO
+                  ELSE
+                     RWORK( I ) = Z( J ) / ( DLAMC3( DSIGJ, -POLES( I+1,
+     $                            2 ) )-DIFR( I, 1 ) ) /
+     $                            ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 )
+                  END IF
+  110          CONTINUE
+               DO 120 I = J + 1, K
+                  IF( Z( J ).EQ.ZERO ) THEN
+                     RWORK( I ) = ZERO
+                  ELSE
+                     RWORK( I ) = Z( J ) / ( DLAMC3( DSIGJ, -POLES( I,
+     $                            2 ) )-DIFL( I ) ) /
+     $                            ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 )
+                  END IF
+  120          CONTINUE
+*
+*              Since B and BX are complex, the following call to DGEMV
+*              is performed in two steps (real and imaginary parts).
+*
+*              CALL DGEMV( 'T', K, NRHS, ONE, B, LDB, WORK, 1, ZERO,
+*    $                     BX( J, 1 ), LDBX )
+*
+               I = K + NRHS*2
+               DO 140 JCOL = 1, NRHS
+                  DO 130 JROW = 1, K
+                     I = I + 1
+                     RWORK( I ) = DBLE( B( JROW, JCOL ) )
+  130             CONTINUE
+  140          CONTINUE
+               CALL DGEMV( 'T', K, NRHS, ONE, RWORK( 1+K+NRHS*2 ), K,
+     $                     RWORK( 1 ), 1, ZERO, RWORK( 1+K ), 1 )
+               I = K + NRHS*2
+               DO 160 JCOL = 1, NRHS
+                  DO 150 JROW = 1, K
+                     I = I + 1
+                     RWORK( I ) = DIMAG( B( JROW, JCOL ) )
+  150             CONTINUE
+  160          CONTINUE
+               CALL DGEMV( 'T', K, NRHS, ONE, RWORK( 1+K+NRHS*2 ), K,
+     $                     RWORK( 1 ), 1, ZERO, RWORK( 1+K+NRHS ), 1 )
+               DO 170 JCOL = 1, NRHS
+                  BX( J, JCOL ) = DCMPLX( RWORK( JCOL+K ),
+     $                            RWORK( JCOL+K+NRHS ) )
+  170          CONTINUE
+  180       CONTINUE
+         END IF
+*
+*        Step (2R): if SQRE = 1, apply back the rotation that is
+*        related to the right null space of the subproblem.
+*
+         IF( SQRE.EQ.1 ) THEN
+            CALL ZCOPY( NRHS, B( M, 1 ), LDB, BX( M, 1 ), LDBX )
+            CALL ZDROT( NRHS, BX( 1, 1 ), LDBX, BX( M, 1 ), LDBX, C, S )
+         END IF
+         IF( K.LT.MAX( M, N ) )
+     $      CALL ZLACPY( 'A', N-K, NRHS, B( K+1, 1 ), LDB, BX( K+1, 1 ),
+     $                   LDBX )
+*
+*        Step (3R): permute rows of B.
+*
+         CALL ZCOPY( NRHS, BX( 1, 1 ), LDBX, B( NLP1, 1 ), LDB )
+         IF( SQRE.EQ.1 ) THEN
+            CALL ZCOPY( NRHS, BX( M, 1 ), LDBX, B( M, 1 ), LDB )
+         END IF
+         DO 190 I = 2, N
+            CALL ZCOPY( NRHS, BX( I, 1 ), LDBX, B( PERM( I ), 1 ), LDB )
+  190    CONTINUE
+*
+*        Step (4R): apply back the Givens rotations performed.
+*
+         DO 200 I = GIVPTR, 1, -1
+            CALL ZDROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB,
+     $                  B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ),
+     $                  -GIVNUM( I, 1 ) )
+  200    CONTINUE
+      END IF
+*
+      RETURN
+*
+*     End of ZLALS0
+*
+      END