diff libcruft/lapack/zlarzb.f @ 6936:e92bc778c634

[project @ 2007-09-30 21:39:05 by dbateman]
author dbateman
date Sun, 30 Sep 2007 21:41:04 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libcruft/lapack/zlarzb.f	Sun Sep 30 21:41:04 2007 +0000
@@ -0,0 +1,234 @@
+      SUBROUTINE ZLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
+     $                   LDV, T, LDT, C, LDC, WORK, LDWORK )
+*
+*  -- LAPACK routine (version 3.1) --
+*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+*     November 2006
+*
+*     .. Scalar Arguments ..
+      CHARACTER          DIRECT, SIDE, STOREV, TRANS
+      INTEGER            K, L, LDC, LDT, LDV, LDWORK, M, N
+*     ..
+*     .. Array Arguments ..
+      COMPLEX*16         C( LDC, * ), T( LDT, * ), V( LDV, * ),
+     $                   WORK( LDWORK, * )
+*     ..
+*
+*  Purpose
+*  =======
+*
+*  ZLARZB applies a complex block reflector H or its transpose H**H
+*  to a complex distributed M-by-N  C from the left or the right.
+*
+*  Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
+*
+*  Arguments
+*  =========
+*
+*  SIDE    (input) CHARACTER*1
+*          = 'L': apply H or H' from the Left
+*          = 'R': apply H or H' from the Right
+*
+*  TRANS   (input) CHARACTER*1
+*          = 'N': apply H (No transpose)
+*          = 'C': apply H' (Conjugate transpose)
+*
+*  DIRECT  (input) CHARACTER*1
+*          Indicates how H is formed from a product of elementary
+*          reflectors
+*          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
+*          = 'B': H = H(k) . . . H(2) H(1) (Backward)
+*
+*  STOREV  (input) CHARACTER*1
+*          Indicates how the vectors which define the elementary
+*          reflectors are stored:
+*          = 'C': Columnwise                        (not supported yet)
+*          = 'R': Rowwise
+*
+*  M       (input) INTEGER
+*          The number of rows of the matrix C.
+*
+*  N       (input) INTEGER
+*          The number of columns of the matrix C.
+*
+*  K       (input) INTEGER
+*          The order of the matrix T (= the number of elementary
+*          reflectors whose product defines the block reflector).
+*
+*  L       (input) INTEGER
+*          The number of columns of the matrix V containing the
+*          meaningful part of the Householder reflectors.
+*          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
+*
+*  V       (input) COMPLEX*16 array, dimension (LDV,NV).
+*          If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.
+*
+*  LDV     (input) INTEGER
+*          The leading dimension of the array V.
+*          If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.
+*
+*  T       (input) COMPLEX*16 array, dimension (LDT,K)
+*          The triangular K-by-K matrix T in the representation of the
+*          block reflector.
+*
+*  LDT     (input) INTEGER
+*          The leading dimension of the array T. LDT >= K.
+*
+*  C       (input/output) COMPLEX*16 array, dimension (LDC,N)
+*          On entry, the M-by-N matrix C.
+*          On exit, C is overwritten by H*C or H'*C or C*H or C*H'.
+*
+*  LDC     (input) INTEGER
+*          The leading dimension of the array C. LDC >= max(1,M).
+*
+*  WORK    (workspace) COMPLEX*16 array, dimension (LDWORK,K)
+*
+*  LDWORK  (input) INTEGER
+*          The leading dimension of the array WORK.
+*          If SIDE = 'L', LDWORK >= max(1,N);
+*          if SIDE = 'R', LDWORK >= max(1,M).
+*
+*  Further Details
+*  ===============
+*
+*  Based on contributions by
+*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
+*
+*  =====================================================================
+*
+*     .. Parameters ..
+      COMPLEX*16         ONE
+      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
+*     ..
+*     .. Local Scalars ..
+      CHARACTER          TRANST
+      INTEGER            I, INFO, J
+*     ..
+*     .. External Functions ..
+      LOGICAL            LSAME
+      EXTERNAL           LSAME
+*     ..
+*     .. External Subroutines ..
+      EXTERNAL           XERBLA, ZCOPY, ZGEMM, ZLACGV, ZTRMM
+*     ..
+*     .. Executable Statements ..
+*
+*     Quick return if possible
+*
+      IF( M.LE.0 .OR. N.LE.0 )
+     $   RETURN
+*
+*     Check for currently supported options
+*
+      INFO = 0
+      IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
+         INFO = -3
+      ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
+         INFO = -4
+      END IF
+      IF( INFO.NE.0 ) THEN
+         CALL XERBLA( 'ZLARZB', -INFO )
+         RETURN
+      END IF
+*
+      IF( LSAME( TRANS, 'N' ) ) THEN
+         TRANST = 'C'
+      ELSE
+         TRANST = 'N'
+      END IF
+*
+      IF( LSAME( SIDE, 'L' ) ) THEN
+*
+*        Form  H * C  or  H' * C
+*
+*        W( 1:n, 1:k ) = conjg( C( 1:k, 1:n )' )
+*
+         DO 10 J = 1, K
+            CALL ZCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
+   10    CONTINUE
+*
+*        W( 1:n, 1:k ) = W( 1:n, 1:k ) + ...
+*                        conjg( C( m-l+1:m, 1:n )' ) * V( 1:k, 1:l )'
+*
+         IF( L.GT.0 )
+     $      CALL ZGEMM( 'Transpose', 'Conjugate transpose', N, K, L,
+     $                  ONE, C( M-L+1, 1 ), LDC, V, LDV, ONE, WORK,
+     $                  LDWORK )
+*
+*        W( 1:n, 1:k ) = W( 1:n, 1:k ) * T'  or  W( 1:m, 1:k ) * T
+*
+         CALL ZTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K, ONE, T,
+     $               LDT, WORK, LDWORK )
+*
+*        C( 1:k, 1:n ) = C( 1:k, 1:n ) - conjg( W( 1:n, 1:k )' )
+*
+         DO 30 J = 1, N
+            DO 20 I = 1, K
+               C( I, J ) = C( I, J ) - WORK( J, I )
+   20       CONTINUE
+   30    CONTINUE
+*
+*        C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
+*                    conjg( V( 1:k, 1:l )' ) * conjg( W( 1:n, 1:k )' )
+*
+         IF( L.GT.0 )
+     $      CALL ZGEMM( 'Transpose', 'Transpose', L, N, K, -ONE, V, LDV,
+     $                  WORK, LDWORK, ONE, C( M-L+1, 1 ), LDC )
+*
+      ELSE IF( LSAME( SIDE, 'R' ) ) THEN
+*
+*        Form  C * H  or  C * H'
+*
+*        W( 1:m, 1:k ) = C( 1:m, 1:k )
+*
+         DO 40 J = 1, K
+            CALL ZCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
+   40    CONTINUE
+*
+*        W( 1:m, 1:k ) = W( 1:m, 1:k ) + ...
+*                        C( 1:m, n-l+1:n ) * conjg( V( 1:k, 1:l )' )
+*
+         IF( L.GT.0 )
+     $      CALL ZGEMM( 'No transpose', 'Transpose', M, K, L, ONE,
+     $                  C( 1, N-L+1 ), LDC, V, LDV, ONE, WORK, LDWORK )
+*
+*        W( 1:m, 1:k ) = W( 1:m, 1:k ) * conjg( T )  or
+*                        W( 1:m, 1:k ) * conjg( T' )
+*
+         DO 50 J = 1, K
+            CALL ZLACGV( K-J+1, T( J, J ), 1 )
+   50    CONTINUE
+         CALL ZTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K, ONE, T,
+     $               LDT, WORK, LDWORK )
+         DO 60 J = 1, K
+            CALL ZLACGV( K-J+1, T( J, J ), 1 )
+   60    CONTINUE
+*
+*        C( 1:m, 1:k ) = C( 1:m, 1:k ) - W( 1:m, 1:k )
+*
+         DO 80 J = 1, K
+            DO 70 I = 1, M
+               C( I, J ) = C( I, J ) - WORK( I, J )
+   70       CONTINUE
+   80    CONTINUE
+*
+*        C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
+*                            W( 1:m, 1:k ) * conjg( V( 1:k, 1:l ) )
+*
+         DO 90 J = 1, L
+            CALL ZLACGV( K, V( 1, J ), 1 )
+   90    CONTINUE
+         IF( L.GT.0 )
+     $      CALL ZGEMM( 'No transpose', 'No transpose', M, L, K, -ONE,
+     $                  WORK, LDWORK, V, LDV, ONE, C( 1, N-L+1 ), LDC )
+         DO 100 J = 1, L
+            CALL ZLACGV( K, V( 1, J ), 1 )
+  100    CONTINUE
+*
+      END IF
+*
+      RETURN
+*
+*     End of ZLARZB
+*
+      END