diff scripts/ode/private/integrate_adaptive.m @ 20568:fcb792acab9b

Moving ode45, odeset, odeget, and levenshtein from odepkg to core. * libinterp/corefcn/levenshtein.cc: move function from odepkg into core * libinterp/corefcn/module.mk: include levenshtein.cc * scripts/ode: move ode45, odeset, odeget, and all dependencies from odepkg into core * scripts/module.mk: include them * doc/interpreter/diffeq.txi: add documentation for ode45, odeset, odeget * NEWS: announce functions included with this changeset * scripts/help/__unimplemented__.m: removed new functions
author jcorno <jacopo.corno@gmail.com>
date Thu, 24 Sep 2015 12:58:46 +0200
parents
children 6256f6e366ac
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/scripts/ode/private/integrate_adaptive.m	Thu Sep 24 12:58:46 2015 +0200
@@ -0,0 +1,387 @@
+## Copyright (C) 2013, Roberto Porcu' <roberto.porcu@polimi.it>
+## OdePkg - A package for solving ordinary differential equations and more
+##
+## This program is free software; you can redistribute it and/or modify
+## it under the terms of the GNU General Public License as published by
+## the Free Software Foundation; either version 2 of the License, or
+## (at your option) any later version.
+##
+## This program is distributed in the hope that it will be useful,
+## but WITHOUT ANY WARRANTY; without even the implied warranty of
+## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+## GNU General Public License for more details.
+##
+## You should have received a copy of the GNU General Public License
+## along with this program; If not, see <http://www.gnu.org/licenses/>.
+
+
+## -*- texinfo -*-
+## @deftypefn {Command} {[@var{t}, @var{y}] =}
+## integrate_adaptive (@var{@@stepper}, @var{order}, @var{@@fun}, @var{tspan},
+## @var{x0}, @var{options})
+##
+## This function file can be called by a ODE solver function in order to
+## integrate the set of ODEs on the interval @var{[t0,t1]} with an
+## adaptive timestep.
+##
+## This function must be called with two output arguments: @var{t} and @var{y}.
+## Variable @var{t} is a column vector and contains the time stamps, instead
+## @var{y} is a matrix in which each column refers to a different unknown
+## of the problem and the rows number is the same of @var{t} rows number so
+## that each row of @var{y} contains the values of all unknowns at the time
+## value contained in the corresponding row in @var{t}.
+##
+## The first input argument must be a function_handle or an inline function
+## representing the stepper, that is the function responsible for step-by-step
+## integration. This function discriminates one method from the others.
+##
+## The second input argument is the order of the stepper. It is needed
+## to compute the adaptive timesteps.
+##
+## The third input argument is a function_handle or an inline function that
+## defines the set of ODE:
+## @ifhtml
+## @example
+## @math{y' = f(t,y)}
+## @end example
+## @end ifhtml
+## @ifnothtml
+## @math{y' = f(t,y)}.
+## @end ifnothtml
+##
+## The fourth input argument is the time vector which defines integration
+## interval, that is @var{[tspan(1),tspan(end)]} and all the intermediate
+## elements are taken as times at which the solution is required.
+##
+## The fifth argument represents the initial conditions for the ODEs and the
+## last input argument contains some options that may be needed for the stepper.
+##
+## @end deftypefn
+##
+## @seealso{integrate_const, integrate_n_steps}
+
+function solution = integrate_adaptive (stepper, order, func, tspan, x0, options)
+
+  solution = struct;
+
+  ## first values for time and solution
+  t = tspan(1);
+  x = x0(:);
+
+  ## get first initial timestep
+  dt = odeget (options, "InitialStep",
+               starting_stepsize (order, func, t, x, options.AbsTol,
+                                  options.RelTol, options.vnormcontrol),
+               "fast_not_empty");
+  vdirection = odeget (options, "vdirection", [], "fast");
+  if (sign (dt) != vdirection)
+    dt = -dt;
+  endif
+  dt = vdirection * min (abs (dt), options.MaxStep);
+
+  ## set parameters
+  k = length (tspan);
+  counter = 2;
+  comp = 0.0;
+  tk = tspan(1);
+  options.comp = comp;
+  
+  ## factor multiplying the stepsize guess
+  facmin = 0.8;
+  fac = 0.38^(1/(order+1)); ## formula taken from Hairer
+  t_caught = false;
+
+
+  ## Initialize the OutputFcn
+  if (options.vhaveoutputfunction)
+    if (options.vhaveoutputselection)
+      solution.vretout = x(options.OutputSel,end);
+    else 
+      solution.vretout = x;
+    endif
+    feval (options.OutputFcn, tspan, solution.vretout,
+           "init", options.vfunarguments{:});
+  endif
+
+  ## Initialize the EventFcn
+  if (options.vhaveeventfunction)
+    odepkg_event_handle (options.Events, t(end), x,
+                         "init", options.vfunarguments{:});
+  endif
+
+  solution.vcntloop = 2;
+  solution.vcntcycles = 1;
+  vcntiter = 0;
+  solution.vunhandledtermination = true;
+  solution.vcntsave = 2;
+  
+  z = t;
+  u = x;
+
+  k_vals = feval (func, t , x, options.vfunarguments{:});
+
+  while (counter <= k)
+    facmax = 1.5;
+
+    ## compute integration step from t to t+dt
+    [s, y, y_est, k_vals] = stepper (func, z(end), u(:,end),
+                                     dt, options, k_vals);
+
+    if (options.vhavenonnegative)
+      x(options.NonNegative,end) = abs (x(options.NonNegative,end));
+      y(options.NonNegative,end) = abs (y(options.NonNegative,end));
+      y_est(options.NonNegative,end) = abs (y_est(options.NonNegative,end));
+    endif
+
+    if (options.vhaveoutputfunction && options.vhaverefine)
+      vSaveVUForRefine = u(:,end);
+    endif
+
+    err = AbsRel_Norm (y(:,end), u(:,end), options.AbsTol, options.RelTol,
+                       options.vnormcontrol, y_est(:,end));
+
+    ## solution accepted only if the error is less or equal to 1.0
+    if (err <= 1)
+
+      [tk, comp] = kahan (tk, comp, dt);
+      options.comp = comp;
+      s(end) = tk;
+
+      ## values on this interval for time and solution
+      z = [z(end);s];
+      u = [u(:,end),y];
+
+      ## if next tspan value is caught, update counter
+      if ((z(end) == tspan(counter))
+          || (abs (z(end) - tspan(counter)) /
+              (max (abs (z(end)), abs (tspan(counter)))) < 8*eps) )
+        counter++;
+  
+      ## if there is an element in time vector at which the solution is required
+      ## the program must compute this solution before going on with next steps
+      elseif (vdirection * z(end) > vdirection * tspan(counter))
+        ## initialize counter for the following cycle
+        i = 2;
+        while (i <= length (z))
+
+          ## if next tspan value is caught, update counter
+          if ((counter <= k)
+              && ((z(i) == tspan(counter))
+                  || (abs (z(i) - tspan(counter)) /
+                      (max (abs (z(i)), abs (tspan(counter)))) < 8*eps)) )
+            counter++;
+          endif
+          ## else, loop until there are requested values inside this subinterval
+          while ((counter <= k)
+                 && (vdirection * z(i) > vdirection * tspan(counter)))
+            ## choose interpolation scheme according to order of the solver
+            switch order
+              case 1
+               u_interp = linear_interpolation ([z(i-1) z(i)],
+                                                [u(:,i-1) u(:,i)],
+                                                tspan(counter));
+              case 2
+                if (! isempty (k_vals))
+                  der = k_vals(:,1);
+                else
+                  der = feval (func, z(i-1) , u(:,i-1),
+                               options.vfunarguments{:});
+                endif
+                u_interp = quadratic_interpolation ([z(i-1) z(i)],
+                                                    [u(:,i-1) u(:,i)],
+                                                    der, tspan(counter));
+              case 3
+                u_interp = ...
+                  hermite_cubic_interpolation ([z(i-1) z(i)],
+                                               [u(:,i-1) u(:,i)],
+                                               [k_vals(:,1) k_vals(:,end)],
+                                               tspan(counter));
+              case 4
+                ## if ode45 is used without local extrapolation this function
+                ## doesn't require a new function evaluation.
+                u_interp = dorpri_interpolation ([z(i-1) z(i)],
+                                                 [u(:,i-1) u(:,i)],
+                                                 k_vals, tspan(counter));
+              case 5
+                ## ode45 with Dormand-Prince scheme:
+                ## 4th order approximation of y in t+dt/2 as proposed by
+                ## Shampine in Lawrence, Shampine, "Some Practical
+                ## Runge-Kutta Formulas", 1986.
+                u_half = u(:,i-1) ...
+                         + 1/2*dt*((6025192743/30085553152) * k_vals(:,1)
+                                   + (51252292925/65400821598) * k_vals(:,3)
+                                   - (2691868925/45128329728) * k_vals(:,4)
+                                   + (187940372067/1594534317056) * k_vals(:,5)
+                                   - (1776094331/19743644256) * k_vals(:,6)
+                                   + (11237099/235043384) * k_vals(:,7));
+                u_interp = ...
+                  hermite_quartic_interpolation ([z(i-1) z(i)],
+                                                 [u(:,i-1) u_half u(:,i)],
+                                                 [k_vals(:,1) k_vals(:,end)],
+                                                 tspan(counter));
+
+                ## it is also possible to do a new function evaluation and use
+                ## the quintic hermite interpolator
+                ## f_half = feval (func, t+1/2*dt, u_half,
+                ##                 options.vfunarguments{:});
+                ## u_interp =
+                ##   hermite_quintic_interpolation ([z(i-1) z(i)],
+                ##                                  [u(:,i-1) u_half u(:,i)],
+                ##                                  [k_vals(:,1) f_half k_vals(:,end)],
+                ##                                  tspan(counter));
+              otherwise
+                warning ("High order interpolation not yet implemented: ",
+                         "using cubic iterpolation instead");
+                der(:,1) = feval (func, z(i-1) , u(:,i-1),
+                                  options.vfunarguments{:});
+                der(:,2) = feval (func, z(i) , u(:,i),
+                                  options.vfunarguments{:});
+                u_interp = ...
+                  hermite_cubic_interpolation ([z(i-1) z(i)],
+                                               [u(:,i-1) u(:,i)],
+                                               der, tspan(counter));
+            endswitch
+
+            ## add the interpolated value of the solution
+            u = [u(:,1:i-1), u_interp, u(:,i:end)];
+            
+            ## add the time requested
+            z = [z(1:i-1);tspan(counter);z(i:end)];
+
+            ## update counters
+            counter++;
+            i++;
+          endwhile
+
+          ## if new time requested is not out of this interval
+          if ((counter <= k)
+              && (vdirection * z(end) > vdirection * tspan(counter)))
+            ## update the counter
+            i++;
+          else
+            ## stop the cycle and go on with the next iteration
+            i = length (z) + 1;
+          endif
+
+        endwhile
+      endif
+
+      if (mod (solution.vcntloop-1, options.OutputSave) == 0)
+        x = [x,u(:,2:end)];
+        t = [t;z(2:end)];
+        solution.vcntsave = solution.vcntsave + 1;    
+      endif
+      solution.vcntloop = solution.vcntloop + 1;
+      vcntiter = 0;
+      
+      ## Call plot only if a valid result has been found, therefore this
+      ## code fragment has moved here. Stop integration if plot function
+      ## returns false
+      if (options.vhaveoutputfunction)
+        for vcnt = 0:options.Refine # Approximation between told and t
+          if (options.vhaverefine) # Do interpolation
+            vapproxtime = (vcnt + 1) / (options.Refine + 2);
+            vapproxvals = (1 - vapproxtime) * vSaveVUForRefine ...
+                          + (vapproxtime) * y(:,end);
+            vapproxtime = s(end) + vapproxtime * dt;
+          else
+            vapproxvals = x(:,end);
+            vapproxtime = t(end);
+          endif
+          if (options.vhaveoutputselection)
+            vapproxvals = vapproxvals(options.OutputSel);
+          endif
+          vpltret = feval (options.OutputFcn, vapproxtime,
+                           vapproxvals, [], options.vfunarguments{:});
+          if (vpltret) # Leave refinement loop
+            break
+          endif
+        endfor
+        if (vpltret) # Leave main loop
+          solution.vunhandledtermination = false;
+          break
+        endif
+      endif
+      
+      ## Call event only if a valid result has been found, therefore this
+      ## code fragment has moved here. Stop integration if veventbreak is
+      ## true
+      if (options.vhaveeventfunction)
+        solution.vevent = odepkg_event_handle (options.Events, t(end),
+            x(:,end), [], options.vfunarguments{:});
+        if (! isempty (solution.vevent{1})
+            && solution.vevent{1} == 1)
+          t(solution.vcntloop-1,:) = solution.vevent{3}(end,:);
+          x(:,solution.vcntloop-1) = solution.vevent{4}(end,:)';
+          solution.vunhandledtermination = false; 
+          break
+        endif
+      endif
+      
+    else
+      facmax = 1.0;
+    endif
+    
+    ## Compute next timestep, formula taken from Hairer
+    err += eps;    # adding an eps to avoid divisions by zero
+    dt = dt * min (facmax, max (facmin,
+                                fac * (1 / err)^(1 / (order + 1))));
+    dt = vdirection * min (abs (dt), options.MaxStep);
+    
+    ## Update counters that count the number of iteration cycles
+    solution.vcntcycles = solution.vcntcycles + 1; # Needed for cost statistics
+    vcntiter = vcntiter + 1; # Needed to find iteration problems
+
+    ## Stop solving because in the last 1000 steps no successful valid
+    ## value has been found
+    if (vcntiter >= 5000)
+      error (["Solving has not been successful. The iterative",
+              " integration loop exited at time t = %f before endpoint at",
+              " tend = %f was reached. This happened because the iterative",
+              " integration loop does not find a valid solution at this time",
+              " stamp. Try to reduce the value of ''InitialStep'' and/or",
+              " ''MaxStep'' with the command ''odeset''.\n"],
+             s(end), tspan(end));
+    endif
+
+    ## if this is the last iteration, save the length of last interval
+    if (counter > k)
+      j = length (z);
+    endif
+  endwhile
+  
+  ## Check if integration of the ode has been successful
+  if (vdirection * z(end) < vdirection * tspan(end))
+    if (solution.vunhandledtermination == true)
+      error ("OdePkg:InvalidArgument",
+             ["Solving has not been successful. The iterative",
+              " integration loop exited at time t = %f",
+              " before endpoint at tend = %f was reached. This may",
+              " happen if the stepsize grows smaller than defined in",
+              " vminstepsize. Try to reduce the value of ''InitialStep''",
+              " and/or ''MaxStep'' with the command ''odeset''.\n"],
+             z(end), tspan(end));
+    else
+      warning ("OdePkg:InvalidArgument",
+               ["Solver has been stopped by a call of ''break'' in the main",
+                " iteration loop at time t = %f before endpoint at tend = %f ",
+                " was reached. This may happen because the @odeplot function",
+                " returned ''true'' or the @event function returned",
+                " ''true''.\n"],
+               z(end), tspan(end));
+    endif
+  endif
+
+  ## Compute how many values are out of time inerval
+  d = vdirection * t((end-(j-1)):end) > vdirection * tspan(end)*ones (j, 1);
+  f = sum (d);
+
+  ## Remove not-requested values of time and solution
+  solution.t = t(1:end-f);
+  solution.x = x(:,1:end-f)';
+  
+endfunction
+
+## Local Variables: ***
+## mode: octave ***
+## End: ***