view scripts/special-matrix/gallery.m @ 20331:0b9d23557506

gallery: fix randsvd by adding missing dependency qmult(). * scripts/special-matrix/gallery.m (randsvd) was copied from the Test Matrix toolbox by Nicholas J. Higham. It made use of qmult() which was also part of that toolbox but was left behind. This qmult() implementation is also recovered from the Test Matrix toolbox. Note that Octave itself used to have qmult() which is part of the legacy quaternion package (now also removed from the new quaternion package). See cset 21904fe299c8 for when qmult() was removed from Octave. Also fix the default value for KL and KU so that a 2 element vector can be used as N.
author Carnë Draug <carandraug@octave.org>
date Fri, 03 Jul 2015 16:18:33 +0100
parents 557979395ca9
children 26fc9bbb8762
line wrap: on
line source

## Copyright (C) 1989-1995 Nicholas .J. Higham
## Copyright (C) 2013-2015 Carnë Draug
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {} gallery (@var{name})
## @deftypefnx {Function File} {} gallery (@var{name}, @var{args})
## Create interesting matrices for testing.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{c} =} gallery ("cauchy", @var{x})
## @deftypefnx {Function File} {@var{c} =} gallery ("cauchy", @var{x}, @var{y})
## Create a Cauchy matrix.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{c} =} gallery ("chebspec", @var{n})
## @deftypefnx {Function File} {@var{c} =} gallery ("chebspec", @var{n}, @var{k})
## Create a Chebyshev spectral differentiation matrix.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{c} =} gallery ("chebvand", @var{p})
## @deftypefnx {Function File} {@var{c} =} gallery ("chebvand", @var{m}, @var{p})
## Create a Vandermonde-like matrix for the Chebyshev polynomials.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{a} =} gallery ("chow", @var{n})
## @deftypefnx {Function File} {@var{a} =} gallery ("chow", @var{n}, @var{alpha})
## @deftypefnx {Function File} {@var{a} =} gallery ("chow", @var{n}, @var{alpha}, @var{delta})
## Create a Chow matrix -- a singular Toeplitz lower Hessenberg matrix.
##
## @end deftypefn
##
## @deftypefn {Function File} {@var{c} =} gallery ("circul", @var{v})
## Create a circulant matrix.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{a} =} gallery ("clement", @var{n})
## @deftypefnx {Function File} {@var{a} =} gallery ("clement", @var{n}, @var{k})
## Create a tridiagonal matrix with zero diagonal entries.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{c} =} gallery ("compar", @var{a})
## @deftypefnx {Function File} {@var{c} =} gallery ("compar", @var{a}, @var{k})
## Create a comparison matrix.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{a} =} gallery ("condex", @var{n})
## @deftypefnx {Function File} {@var{a} =} gallery ("condex", @var{n}, @var{k})
## @deftypefnx {Function File} {@var{a} =} gallery ("condex", @var{n}, @var{k}, @var{theta})
## Create a `counterexample' matrix to a condition estimator.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{a} =} gallery ("cycol", [@var{m} @var{n}])
## @deftypefnx {Function File} {@var{a} =} gallery ("cycol", @var{n})
## @deftypefnx {Function File} {@var{a} =} gallery (@dots{}, @var{k})
## Create a matrix whose columns repeat cyclically.
##
## @end deftypefn
##
## @deftypefn  {Function File} {[@var{c}, @var{d}, @var{e}] =} gallery ("dorr", @var{n})
## @deftypefnx {Function File} {[@var{c}, @var{d}, @var{e}] =} gallery ("dorr", @var{n}, @var{theta})
## @deftypefnx {Function File} {@var{a} =} gallery ("dorr", @dots{})
## Create a diagonally dominant, ill-conditioned, tridiagonal matrix.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{a} =} gallery ("dramadah", @var{n})
## @deftypefnx {Function File} {@var{a} =} gallery ("dramadah", @var{n}, @var{k})
## Create a (0, 1) matrix whose inverse has large integer entries.
##
## @end deftypefn
##
## @deftypefn {Function File} {@var{a} =} gallery ("fiedler", @var{c})
## Create a symmetric @nospell{Fiedler} matrix.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{a} =} gallery ("forsythe", @var{n})
## @deftypefnx {Function File} {@var{a} =} gallery ("forsythe", @var{n}, @var{alpha})
## @deftypefnx {Function File} {@var{a} =} gallery ("forsythe", @var{n}, @var{alpha}, @var{lambda})
## Create a @nospell{Forsythe} matrix (a perturbed Jordan block).
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{f} =} gallery ("frank", @var{n})
## @deftypefnx {Function File} {@var{f} =} gallery ("frank", @var{n}, @var{k})
## Create a Frank matrix (ill-conditioned eigenvalues).
##
## @end deftypefn
##
## @deftypefn {Function File} {@var{c} =} gallery ("gcdmat", @var{n})
## Create a greatest common divisor matrix.
##
## @var{c} is an @var{n}-by-@var{n} matrix whose values correspond to the
## greatest common divisor of its coordinate values, i.e., @var{c}(i,j)
## correspond @code{gcd (i, j)}.
## @end deftypefn
##
## @deftypefn  {Function File} {@var{a} =} gallery ("gearmat", @var{n})
## @deftypefnx {Function File} {@var{a} =} gallery ("gearmat", @var{n}, @var{i})
## @deftypefnx {Function File} {@var{a} =} gallery ("gearmat", @var{n}, @var{i}, @var{j})
## Create a Gear matrix.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{g} =} gallery ("grcar", @var{n})
## @deftypefnx {Function File} {@var{g} =} gallery ("grcar", @var{n}, @var{k})
## Create a Toeplitz matrix with sensitive eigenvalues.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{a} =} gallery ("hanowa", @var{n})
## @deftypefnx {Function File} {@var{a} =} gallery ("hanowa", @var{n}, @var{d})
## Create a matrix whose eigenvalues lie on a vertical line in the complex
## plane.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{v} =} gallery ("house", @var{x})
## @deftypefnx {Function File} {[@var{v}, @var{beta}] =} gallery ("house", @var{x})
## Create a householder matrix.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{a} =} gallery ("integerdata", @var{imax}, [@var{M} @var{N} @dots{}], @var{j})
## @deftypefnx {Function File} {@var{a} =} gallery ("integerdata", @var{imax}, @var{M}, @var{N}, @dots{}, @var{j})
## @deftypefnx {Function File} {@var{a} =} gallery ("integerdata", [@var{imin}, @var{imax}], [@var{M} @var{N} @dots{}], @var{j})
## @deftypefnx {Function File} {@var{a} =} gallery ("integerdata", [@var{imin}, @var{imax}], @var{M}, @var{N}, @dots{}, @var{j})
## @deftypefnx {Function File} {@var{a} =} gallery ("integerdata", @dots{}, "@var{class}")
## Create a matrix with random integers in the range [1, @var{imax}].
## If @var{imin} is given then the integers are in the range
## [@var{imin}, @var{imax}].
##
## The second input is a matrix of dimensions describing the size of the output.
## The dimensions can also be input as comma-separated arguments.
##
## The input @var{j} is an integer index in the range [0, 2^32-1].  The values
## of the output matrix are always exactly the same (reproducibility) for a
## given size input and @var{j} index.
##
## The final optional argument determines the class of the resulting matrix.
## Possible values for @var{class}: @qcode{"uint8"}, @qcode{"uint16"},
## @qcode{"uint32"}, @qcode{"int8"}, @qcode{"int16"}, int32", @qcode{"single"},
## @qcode{"double"}.  The default is @qcode{"double"}.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{a} =} gallery ("invhess", @var{x})
## @deftypefnx {Function File} {@var{a} =} gallery ("invhess", @var{x}, @var{y})
## Create the inverse of an upper Hessenberg matrix.
##
## @end deftypefn
##
## @deftypefn {Function File} {@var{a} =} gallery ("invol", @var{n})
## Create an involutory matrix.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{a} =} gallery ("ipjfact", @var{n})
## @deftypefnx {Function File} {@var{a} =} gallery ("ipjfact", @var{n}, @var{k})
## Create a Hankel matrix with factorial elements.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{a} =} gallery ("jordbloc", @var{n})
## @deftypefnx {Function File} {@var{a} =} gallery ("jordbloc", @var{n}, @var{lambda})
## Create a Jordan block.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{u} =} gallery ("kahan", @var{n})
## @deftypefnx {Function File} {@var{u} =} gallery ("kahan", @var{n}, @var{theta})
## @deftypefnx {Function File} {@var{u} =} gallery ("kahan", @var{n}, @var{theta}, @var{pert})
## Create a @nospell{Kahan} matrix (upper trapezoidal).
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{a} =} gallery ("kms", @var{n})
## @deftypefnx {Function File} {@var{a} =} gallery ("kms", @var{n}, @var{rho})
## Create a @nospell{Kac-Murdock-Szego} Toeplitz matrix.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{b} =} gallery ("krylov", @var{a})
## @deftypefnx {Function File} {@var{b} =} gallery ("krylov", @var{a}, @var{x})
## @deftypefnx {Function File} {@var{b} =} gallery ("krylov", @var{a}, @var{x}, @var{j})
## Create a Krylov matrix.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{a} =} gallery ("lauchli", @var{n})
## @deftypefnx {Function File} {@var{a} =} gallery ("lauchli", @var{n}, @var{mu})
## Create a @nospell{Lauchli} matrix (rectangular).
##
## @end deftypefn
##
## @deftypefn {Function File} {@var{a} =} gallery ("lehmer", @var{n})
## Create a @nospell{Lehmer} matrix (symmetric positive definite).
##
## @end deftypefn
##
## @deftypefn {Function File} {@var{t} =} gallery ("lesp", @var{n})
## Create a tridiagonal matrix with real, sensitive eigenvalues.
##
## @end deftypefn
##
## @deftypefn {Function File} {@var{a} =} gallery ("lotkin", @var{n})
## Create a @nospell{Lotkin} matrix.
##
## @end deftypefn
##
## @deftypefn {Function File} {@var{a} =} gallery ("minij", @var{n})
## Create a symmetric positive definite matrix MIN(i,j).
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{a} =} gallery ("moler", @var{n})
## @deftypefnx {Function File} {@var{a} =} gallery ("moler", @var{n}, @var{alpha})
## Create a @nospell{Moler} matrix (symmetric positive definite).
##
## @end deftypefn
##
## @deftypefn {Function File} {[@var{a}, @var{t}] =} gallery ("neumann", @var{n})
## Create a singular matrix from the discrete Neumann problem (sparse).
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{a} =} gallery ("normaldata", [@var{M} @var{N} @dots{}], @var{j})
## @deftypefnx {Function File} {@var{a} =} gallery ("normaldata", @var{M}, @var{N}, @dots{}, @var{j})
## @deftypefnx {Function File} {@var{a} =} gallery ("normaldata", @dots{}, "@var{class}")
## Create a matrix with random samples from the standard normal distribution
## (mean = 0, std = 1).
##
## The first input is a matrix of dimensions describing the size of the output.
## The dimensions can also be input as comma-separated arguments.
##
## The input @var{j} is an integer index in the range [0, 2^32-1].  The values
## of the output matrix are always exactly the same (reproducibility) for a
## given size input and @var{j} index.
##
## The final optional argument determines the class of the resulting matrix.
## Possible values for @var{class}: @qcode{"single"}, @qcode{"double"}.
## The default is @qcode{"double"}.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{q} =} gallery ("orthog", @var{n})
## @deftypefnx {Function File} {@var{q} =} gallery ("orthog", @var{n}, @var{k})
## Create orthogonal and nearly orthogonal matrices.
##
## @end deftypefn
##
## @deftypefn {Function File} {@var{a} =} gallery ("parter", @var{n})
## Create a @nospell{Parter} matrix (a Toeplitz matrix with singular values
## near pi).
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{p} =} gallery ("pei", @var{n})
## @deftypefnx {Function File} {@var{p} =} gallery ("pei", @var{n}, @var{alpha})
## Create a Pei matrix.
##
## @end deftypefn
##
## @deftypefn {Function File} {@var{a} =} gallery ("Poisson", @var{n})
## Create a block tridiagonal matrix from Poisson's equation (sparse).
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{a} =} gallery ("prolate", @var{n})
## @deftypefnx {Function File} {@var{a} =} gallery ("prolate", @var{n}, @var{w})
## Create a prolate matrix (symmetric, ill-conditioned Toeplitz matrix).
##
## @end deftypefn
##
## @deftypefn {Function File} {@var{h} =} gallery ("randhess", @var{x})
## Create a random, orthogonal upper Hessenberg matrix.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{a} =} gallery ("rando", @var{n})
## @deftypefnx {Function File} {@var{a} =} gallery ("rando", @var{n}, @var{k})
## Create a random matrix with elements -1, 0 or 1.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{a} =} gallery ("randsvd", @var{n})
## @deftypefnx {Function File} {@var{a} =} gallery ("randsvd", @var{n}, @var{kappa})
## @deftypefnx {Function File} {@var{a} =} gallery ("randsvd", @var{n}, @var{kappa}, @var{mode})
## @deftypefnx {Function File} {@var{a} =} gallery ("randsvd", @var{n}, @var{kappa}, @var{mode}, @var{kl})
## @deftypefnx {Function File} {@var{a} =} gallery ("randsvd", @var{n}, @var{kappa}, @var{mode}, @var{kl}, @var{ku})
## Create a random matrix with pre-assigned singular values.
##
## @end deftypefn
##
## @deftypefn {Function File} {@var{a} =} gallery ("redheff", @var{n})
## Create a zero and ones matrix of @nospell{Redheffer} associated with the
## Riemann hypothesis.
##
## @end deftypefn
##
## @deftypefn {Function File} {@var{a} =} gallery ("riemann", @var{n})
## Create a matrix associated with the Riemann hypothesis.
##
## @end deftypefn
##
## @deftypefn {Function File} {@var{a} =} gallery ("ris", @var{n})
## Create a symmetric Hankel matrix.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{a} =} gallery ("smoke", @var{n})
## @deftypefnx {Function File} {@var{a} =} gallery ("smoke", @var{n}, @var{k})
## Create a complex matrix, with a `smoke ring' pseudospectrum.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{t} =} gallery ("toeppd", @var{n})
## @deftypefnx {Function File} {@var{t} =} gallery ("toeppd", @var{n}, @var{m})
## @deftypefnx {Function File} {@var{t} =} gallery ("toeppd", @var{n}, @var{m}, @var{w})
## @deftypefnx {Function File} {@var{t} =} gallery ("toeppd", @var{n}, @var{m}, @var{w}, @var{theta})
## Create a symmetric positive definite Toeplitz matrix.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{p} =} gallery ("toeppen", @var{n})
## @deftypefnx {Function File} {@var{p} =} gallery ("toeppen", @var{n}, @var{a})
## @deftypefnx {Function File} {@var{p} =} gallery ("toeppen", @var{n}, @var{a}, @var{b})
## @deftypefnx {Function File} {@var{p} =} gallery ("toeppen", @var{n}, @var{a}, @var{b}, @var{c})
## @deftypefnx {Function File} {@var{p} =} gallery ("toeppen", @var{n}, @var{a}, @var{b}, @var{c}, @var{d})
## @deftypefnx {Function File} {@var{p} =} gallery ("toeppen", @var{n}, @var{a}, @var{b}, @var{c}, @var{d}, @var{e})
## Create a pentadiagonal Toeplitz matrix (sparse).
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{a} =} gallery ("tridiag", @var{x}, @var{y}, @var{z})
## @deftypefnx {Function File} {@var{a} =} gallery ("tridiag", @var{n})
## @deftypefnx {Function File} {@var{a} =} gallery ("tridiag", @var{n}, @var{c}, @var{d}, @var{e})
## Create a tridiagonal matrix (sparse).
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{t} =} gallery ("triw", @var{n})
## @deftypefnx {Function File} {@var{t} =} gallery ("triw", @var{n}, @var{alpha})
## @deftypefnx {Function File} {@var{t} =} gallery ("triw", @var{n}, @var{alpha}, @var{k})
## Create an upper triangular matrix discussed by
## @nospell{Kahan, Golub, and Wilkinson}.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{a} =} gallery ("uniformdata", [@var{M} @var{N} @dots{}], @var{j})
## @deftypefnx {Function File} {@var{a} =} gallery ("uniformdata", @var{M}, @var{N}, @dots{}, @var{j})
## @deftypefnx {Function File} {@var{a} =} gallery ("uniformdata", @dots{}, "@var{class}")
## Create a matrix with random samples from the standard uniform distribution
## (range [0,1]).
##
## The first input is a matrix of dimensions describing the size of the output.
## The dimensions can also be input as comma-separated arguments.
##
## The input @var{j} is an integer index in the range [0, 2^32-1].  The values
## of the output matrix are always exactly the same (reproducibility) for a
## given size input and @var{j} index.
##
## The final optional argument determines the class of the resulting matrix.
## Possible values for @var{class}: @qcode{"single"}, @qcode{"double"}.
## The default is @qcode{"double"}.
##
## @end deftypefn
##
## @deftypefn  {Function File} {@var{a} =} gallery ("wathen", @var{nx}, @var{ny})
## @deftypefnx {Function File} {@var{a} =} gallery ("wathen", @var{nx}, @var{ny}, @var{k})
## Create the @nospell{Wathen} matrix.
##
## @end deftypefn
##
## @deftypefn {Function File} {[@var{a}, @var{b}] =} gallery ("wilk", @var{n})
## Create various specific matrices devised/discussed by Wilkinson.
##
## @end deftypefn

## Code for most of the individual matrices (except binomial, gcdmat,
## integerdata, leslie, normaldata, randcolu, randcorr, randjorth, sampling,
## uniformdata) by Nicholas .J. Higham <Nicholas.J.Higham@manchester.ac.uk>
## Adapted for Octave and into single gallery function by Carnë Draug

function [varargout] = gallery (name, varargin)

  if (nargin < 1)
    print_usage ();
  elseif (! ischar (name))
    error ("gallery: NAME must be a string.");
  endif

  ## NOTE: there isn't a lot of input check in the individual functions
  ## that actually build the functions.  This is by design. The original
  ## code by Higham did not perform it and was propagated to Matlab, so
  ## for compatibility, we also don't make it. For example, arguments
  ## that behave as switches, and in theory accepting a value of 0 or 1,
  ## will use a value of 0, for any value other than 1 (only check made
  ## is if the value is equal to 1). It will often also accept string
  ## values instead of numeric. Only input check added was where it
  ## would be causing an error anyway.

  ## we will always want to return at least 1 output
  n_out = nargout;
  if (n_out == 0)
    n_out = 1;
  endif

  switch (tolower (name))
    case "binomial"
      error ("gallery: matrix %s not implemented.", name);
    case "cauchy"     , [varargout{1:n_out}] = cauchy      (varargin{:});
    case "chebspec"   , [varargout{1:n_out}] = chebspec    (varargin{:});
    case "chebvand"   , [varargout{1:n_out}] = chebvand    (varargin{:});
    case "chow"       , [varargout{1:n_out}] = chow        (varargin{:});
    case "circul"     , [varargout{1:n_out}] = circul      (varargin{:});
    case "clement"    , [varargout{1:n_out}] = clement     (varargin{:});
    case "compar"     , [varargout{1:n_out}] = compar      (varargin{:});
    case "condex"     , [varargout{1:n_out}] = condex      (varargin{:});
    case "cycol"      , [varargout{1:n_out}] = cycol       (varargin{:});
    case "dorr"       , [varargout{1:n_out}] = dorr        (varargin{:});
    case "dramadah"   , [varargout{1:n_out}] = dramadah    (varargin{:});
    case "fiedler"    , [varargout{1:n_out}] = fiedler     (varargin{:});
    case "forsythe"   , [varargout{1:n_out}] = forsythe    (varargin{:});
    case "frank"      , [varargout{1:n_out}] = frank       (varargin{:});
    case "gearmat"    , [varargout{1:n_out}] = gearmat     (varargin{:});
    case "gcdmat"     , [varargout{1:n_out}] = gcdmat      (varargin{:});
    case "grcar"      , [varargout{1:n_out}] = grcar       (varargin{:});
    case "hanowa"     , [varargout{1:n_out}] = hanowa      (varargin{:});
    case "house"      , [varargout{1:n_out}] = house       (varargin{:});
    case "integerdata", [varargout{1:n_out}] = integerdata (varargin{:});
    case "invhess"    , [varargout{1:n_out}] = invhess     (varargin{:});
    case "invol"      , [varargout{1:n_out}] = invol       (varargin{:});
    case "ipjfact"    , [varargout{1:n_out}] = ipjfact     (varargin{:});
    case "jordbloc"   , [varargout{1:n_out}] = jordbloc    (varargin{:});
    case "kahan"      , [varargout{1:n_out}] = kahan       (varargin{:});
    case "kms"        , [varargout{1:n_out}] = kms         (varargin{:});
    case "krylov"     , [varargout{1:n_out}] = krylov      (varargin{:});
    case "lauchli"    , [varargout{1:n_out}] = lauchli     (varargin{:});
    case "lehmer"     , [varargout{1:n_out}] = lehmer      (varargin{:});
    case "leslie"
      error ("gallery: matrix %s not implemented.", name);
    case "lesp"       , [varargout{1:n_out}] = lesp        (varargin{:});
    case "lotkin"     , [varargout{1:n_out}] = lotkin      (varargin{:});
    case "minij"      , [varargout{1:n_out}] = minij       (varargin{:});
    case "moler"      , [varargout{1:n_out}] = moler       (varargin{:});
    case "neumann"    , [varargout{1:n_out}] = neumann     (varargin{:});
    case "normaldata" , [varargout{1:n_out}] = normaldata  (varargin{:});
    case "orthog"     , [varargout{1:n_out}] = orthog      (varargin{:});
    case "parter"     , [varargout{1:n_out}] = parter      (varargin{:});
    case "pei"        , [varargout{1:n_out}] = pei         (varargin{:});
    case "poisson"    , [varargout{1:n_out}] = poisson     (varargin{:});
    case "prolate"    , [varargout{1:n_out}] = prolate     (varargin{:});
    case "randcolu"
      error ("gallery: matrix %s not implemented.", name);
    case "randcorr"
      error ("gallery: matrix %s not implemented.", name);
    case "randhess"    , [varargout{1:n_out}] = randhess    (varargin{:});
    case "randjorth"
      error ("gallery: matrix %s not implemented.", name);
    case "rando"       , [varargout{1:n_out}] = rando       (varargin{:});
    case "randsvd"     , [varargout{1:n_out}] = randsvd     (varargin{:});
    case "redheff"     , [varargout{1:n_out}] = redheff     (varargin{:});
    case "riemann"     , [varargout{1:n_out}] = riemann     (varargin{:});
    case "ris"         , [varargout{1:n_out}] = ris         (varargin{:});
    case "sampling"
      error ("gallery: matrix %s not implemented.", name);
    case "smoke"       , [varargout{1:n_out}] = smoke       (varargin{:});
    case "toeppd"      , [varargout{1:n_out}] = toeppd      (varargin{:});
    case "toeppen"     , [varargout{1:n_out}] = toeppen     (varargin{:});
    case "tridiag"     , [varargout{1:n_out}] = tridiag     (varargin{:});
    case "triw"        , [varargout{1:n_out}] = triw        (varargin{:});
    case "uniformdata" , [varargout{1:n_out}] = uniformdata (varargin{:});
    case "wathen"      , [varargout{1:n_out}] = wathen      (varargin{:});
    case "wilk"        , [varargout{1:n_out}] = wilk        (varargin{:});
    otherwise
      error ("gallery: unknown matrix with NAME %s", name);
  endswitch

endfunction

function C = cauchy (x, y)
  ##CAUCHY  Cauchy matrix.
  ##  C = CAUCHY(X, Y), where X, Y are N-vectors, is the N-by-N matrix
  ##  with C(i,j) = 1/(X(i)+Y(j)).   By default, Y = X.
  ##  Special case: if X is a scalar CAUCHY(X) is the same as CAUCHY(1:X).
  ##  Explicit formulas are known for DET(C) (which is nonzero if X and Y
  ##  both have distinct elements) and the elements of INV(C).
  ##  C is totally positive if 0 < X(1) < ... < X(N) and
  ##  0 < Y(1) < ... < Y(N).
  ##
  ##  References:
  ##  N.J. Higham, Accuracy and Stability of Numerical Algorithms,
  ##    Society for Industrial and Applied Mathematics, Philadelphia, PA,
  ##    USA, 1996; sec. 26.1.
  ##  D.E. Knuth, The Art of Computer Programming, Volume 1,
  ##    Fundamental Algorithms, second edition, Addison-Wesley, Reading,
  ##    Massachusetts, 1973, p. 36.
  ##  E.E. Tyrtyshnikov, Cauchy-Toeplitz matrices and some applications,
  ##    Linear Algebra and Appl., 149 (1991), pp. 1-18.
  ##    O. Taussky and M. Marcus, Eigenvalues of finite matrices, in
  ##    Survey of Numerical Analysis, J. Todd, ed., McGraw-Hill, New York,
  ##    pp. 279-313, 1962. (States the totally positive property on p. 295.)

  if (nargin < 1 || nargin > 2)
    error ("gallery: 1 or 2 arguments are required for cauchy matrix.");
  elseif (! isnumeric (x))
    error ("gallery: X must be numeric for cauchy matrix.");
  elseif (nargin == 2 && ! isnumeric (y))
    error ("gallery: Y must be numeric for cauchy matrix.");
  endif

  n = numel (x);
  if (isscalar (x) && fix (x) == x)
    n = x;
    x = 1:n;
  elseif (n > 1 && isvector (x))
    ## do nothing
  else
    error ("gallery: X be an integer or a vector for cauchy matrix.");
  endif

  if (nargin == 1)
    y = x;
  endif

  ## Ensure x and y are column vectors
  x = x(:);
  y = y(:);
  if (numel (x) != numel (y))
    error ("gallery: X and Y must be vectors of same length for cauchy matrix.");
  endif

  C = x * ones (1, n) + ones (n, 1) * y.';
  C = ones (n) ./ C;
endfunction

function C = chebspec (n, k = 0)
  ## CHEBSPEC  Chebyshev spectral differentiation matrix.
  ##   C = CHEBSPEC(N, K) is a Chebyshev spectral differentiation
  ##   matrix of order N.  K = 0 (the default) or 1.
  ##   For K = 0 (`no boundary conditions'), C is nilpotent, with
  ##       C^N = 0 and it has the null vector ONES(N,1).
  ##       C is similar to a Jordan block of size N with eigenvalue zero.
  ##   For K = 1, C is nonsingular and well-conditioned, and its eigenvalues
  ##       have negative real parts.
  ##   For both K, the computed eigenvector matrix X from EIG is
  ##       ill-conditioned (MESH(REAL(X)) is interesting).
  ##
  ##   References:
  ##   C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral
  ##      Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988; p. 69.
  ##   L.N. Trefethen and M.R. Trummer, An instability phenomenon in
  ##      spectral methods, SIAM J. Numer. Anal., 24 (1987), pp. 1008-1023.
  ##   D. Funaro, Computing the inverse of the Chebyshev collocation
  ##      derivative, SIAM J. Sci. Stat. Comput., 9 (1988), pp. 1050-1057.

  if (nargin < 1 || nargin > 2)
    error ("gallery: 1 to 2 arguments are required for chebspec matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for chebspec matrix.");
  elseif (! isnumeric (k) || ! isscalar (k))
    error ("gallery: K must be a scalar for chebspec matrix.");
  endif

  ## k = 1 case obtained from k = 0 case with one bigger n.
  switch (k)
    case (0), # do nothing
    case (1), n = n + 1;
    otherwise
      error ("gallery: K should be either 0 or 1 for chebspec matrix.");
  endswitch

  n -= 1;
  C = zeros (n+1);

  one    = ones (n+1, 1);
  x      = cos ((0:n)' * (pi/n));
  d      = ones (n+1, 1);
  d(1)   = 2;
  d(n+1) = 2;

  ## eye(size(C)) on next line avoids div by zero.
  C = (d * (one./d)') ./ (x*one'-one*x' + eye (size (C)));

  ##  Now fix diagonal and signs.
  C(1,1) = (2*n^2+1)/6;
  for i = 2:n+1
    if (rem (i, 2) == 0)
      C(:,i) = -C(:,i);
      C(i,:) = -C(i,:);
    endif
    if (i < n+1)
      C(i,i) = -x(i)/(2*(1-x(i)^2));
    else
      C(n+1,n+1) = -C(1,1);
    endif
  endfor

  if (k == 1)
    C = C(2:n+1,2:n+1);
  endif
endfunction

function C = chebvand (m, p)
  ## CHEBVAND Vandermonde-like matrix for the Chebyshev polynomials.
  ##   C = CHEBVAND(P), where P is a vector, produces the (primal)
  ##   Chebyshev Vandermonde matrix based on the points P,
  ##   i.e., C(i,j) = T_{i-1}(P(j)), where T_{i-1} is the Chebyshev
  ##   polynomial of degree i-1.
  ##   CHEBVAND(M,P) is a rectangular version of CHEBVAND(P) with M rows.
  ##   Special case: If P is a scalar then P equally spaced points on
  ##                 [0,1] are used.
  ##
  ##   Reference:
  ##   N.J. Higham, Stability analysis of algorithms for solving confluent
  ##     Vandermonde-like systems, SIAM J. Matrix Anal. Appl., 11 (1990),
  ##     pp. 23-41.

  if (nargin < 1 || nargin > 2)
    error ("gallery: 1 or 2 arguments are required for chebvand matrix.");
  endif

  ## because the order of the arguments changes if nargin is 1 or 2 ...

  if (nargin == 1)
    p = m;
  endif

  n = numel (p);
  if (! isnumeric (p))
    error ("gallery: P must be numeric for chebvand matrix.");
  elseif (isscalar (p) && fix (p) == p)
    n = p;
    p = linspace (0, 1, n);
  elseif (n > 1 && isvector (p))
    ## do nothing
  endif
  p = p(:).'; # Ensure p is a row vector.

  if (nargin == 1)
    m = n;
  elseif (! isnumeric (m) || ! isscalar (m))
    error ("gallery: M must be a scalar for chebvand matrix.");
  endif

  C = ones (m, n);
  if (m != 1)
    C(2,:) = p;
    ##      Use Chebyshev polynomial recurrence.
    for i = 3:m
      C(i,:) = 2.*p.*C(i-1,:) - C(i-2,:);
    endfor
  endif
endfunction

function A = chow (n, alpha = 1, delta = 0)
  ## CHOW    Chow matrix - a singular Toeplitz lower Hessenberg matrix.
  ##   A = CHOW(N, ALPHA, DELTA) is a Toeplitz lower Hessenberg matrix
  ##   A = H(ALPHA) + DELTA*EYE, where H(i,j) = ALPHA^(i-j+1).
  ##   H(ALPHA) has p = FLOOR(N/2) zero eigenvalues, the rest being
  ##   4*ALPHA*COS( k*PI/(N+2) )^2, k=1:N-p.
  ##   Defaults: ALPHA = 1, DELTA = 0.
  ##
  ##   References:
  ##   T.S. Chow, A class of Hessenberg matrices with known
  ##      eigenvalues and inverses, SIAM Review, 11 (1969), pp. 391-395.
  ##   G. Fairweather, On the eigenvalues and eigenvectors of a class of
  ##      Hessenberg matrices, SIAM Review, 13 (1971), pp. 220-221.

  if (nargin < 1 || nargin > 3)
    error ("gallery: 1 to 3 arguments are required for chow matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for chow matrix.");
  elseif (! isnumeric (alpha) || ! isscalar (alpha))
    error ("gallery: ALPHA must be a scalar for chow matrix.");
  elseif (! isnumeric (delta) || ! isscalar (delta))
    error ("gallery: DELTA must be a scalar for chow matrix.");
  endif

  A = toeplitz (alpha.^(1:n), [alpha 1 zeros(1, n-2)]) + delta * eye (n);
endfunction

function C = circul (v)
  ## CIRCUL  Circulant matrix.
  ##   C = CIRCUL(V) is the circulant matrix whose first row is V.
  ##   (A circulant matrix has the property that each row is obtained
  ##   from the previous one by cyclically permuting the entries one step
  ##   forward; it is a special Toeplitz matrix in which the diagonals
  ##   `wrap round'.)
  ##   Special case: if V is a scalar then C = CIRCUL(1:V).
  ##   The eigensystem of C (N-by-N) is known explicitly.   If t is an Nth
  ##   root of unity, then the inner product of V with W = [1 t t^2 ... t^N]
  ##   is an eigenvalue of C, and W(N:-1:1) is an eigenvector of C.
  ##
  ##   Reference:
  ##   P.J. Davis, Circulant Matrices, John Wiley, 1977.

  if (nargin != 1)
    error ("gallery: 1 argument is required for circul matrix.");
  elseif (! isnumeric (v))
    error ("gallery: V must be numeric for circul matrix.");
  endif

  n = numel (v);
  if (isscalar (v) && fix (v) == v)
    n = v;
    v = 1:n;
  elseif (n > 1 && isvector (v))
    ## do nothing
  else
    error ("gallery: X must be a scalar or a vector for circul matrix.");
  endif

  v = v(:).';   # Make sure v is a row vector
  C = toeplitz ([v(1) v(n:-1:2)], v);
endfunction

function A = clement (n, k = 0)
  ## CLEMENT   Clement matrix - tridiagonal with zero diagonal entries.
  ##   CLEMENT(N, K) is a tridiagonal matrix with zero diagonal entries
  ##   and known eigenvalues.  It is singular if N is odd.  About 64
  ##   percent of the entries of the inverse are zero.  The eigenvalues
  ##   are plus and minus the numbers N-1, N-3, N-5, ..., (1 or 0).
  ##   For K = 0 (the default) the matrix is unsymmetric, while for
  ##   K = 1 it is symmetric.
  ##   CLEMENT(N, 1) is diagonally similar to CLEMENT(N).
  ##
  ##   Similar properties hold for TRIDIAG(X,Y,Z) where Y = ZEROS(N,1).
  ##   The eigenvalues still come in plus/minus pairs but they are not
  ##   known explicitly.
  ##
  ##   References:
  ##   P.A. Clement, A class of triple-diagonal matrices for test
  ##      purposes, SIAM Review, 1 (1959), pp. 50-52.
  ##   A. Edelman and E. Kostlan, The road from Kac's matrix to Kac's
  ##      random polynomials. In John~G. Lewis, editor, Proceedings of
  ##      the Fifth SIAM Conference on Applied Linear Algebra Society
  ##      for Industrial and Applied Mathematics, Philadelphia, 1994,
  ##      pp. 503-507.
  ##   O. Taussky and J. Todd, Another look at a matrix of Mark Kac,
  ##      Linear Algebra and Appl., 150 (1991), pp. 341-360.

  if (nargin < 1 || nargin > 2)
    error ("gallery: 1 or 2 arguments are required for clement matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for clement matrix.");
  elseif (! isnumeric (k) || ! isscalar (k))
    error ("gallery: K must be a numeric scalar for clement matrix.");
  endif

  n -= 1;
  x = n:-1:1;
  z = 1:n;

  if (k == 0)
    A = diag (x, -1) + diag (z, 1);
  elseif (k == 1)
    y = sqrt (x.*z);
    A = diag (y, -1) + diag (y, 1);
  else
    error ("gallery: K must have a value of 0 or 1 for clement matrix.");
  endif
endfunction

function C = compar (A, k = 0)
  ## COMP    Comparison matrices.
  ##   COMP(A) is DIAG(B) - TRIL(B,-1) - TRIU(B,1), where B = ABS(A).
  ##   COMP(A, 1) is A with each diagonal element replaced by its
  ##   absolute value, and each off-diagonal element replaced by minus
  ##   the absolute value of the largest element in absolute value in
  ##   its row.  However, if A is triangular COMP(A, 1) is too.
  ##   COMP(A, 0) is the same as COMP(A).
  ##   COMP(A) is often denoted by M(A) in the literature.
  ##
  ##   Reference (e.g.):
  ##   N.J. Higham, A survey of condition number estimation for
  ##   triangular matrices, SIAM Review, 29 (1987), pp. 575-596.

  if (nargin < 1 || nargin > 2)
    error ("gallery: 1 or 2 arguments are required for compar matrix.");
  elseif (! isnumeric (A) || ndims (A) != 2)
    error ("gallery: A must be a 2-D matrix for compar matrix.");
  elseif (! isnumeric (k) || ! isscalar (k))
    error ("gallery: K must be a numeric scalar for compar matrix.");
  endif

  [m, n] = size (A);
  p = min (m, n);

  if (k == 0)
    ## This code uses less temporary storage than
    ## the `high level' definition above.
    C = -abs (A);
    for j = 1:p
      C(j,j) = abs (A(j,j));
    endfor

  elseif (k == 1)
    C = A';
    for j = 1:p
      C(k,k) = 0;
    endfor
    mx = max (abs (C));
    C  = -mx'*ones (1, n);
    for j = 1:p
      C(j,j) = abs (A(j,j));
    endfor
    if (all (A == tril (A))), C = tril (C); endif
    if (all (A == triu (A))), C = triu (C); endif

  else
    error ("gallery: K must have a value of 0 or 1 for compar matrix.");
  endif

endfunction

function A = condex (n, k = 4, theta = 100)
  ## CONDEX   `Counterexamples' to matrix condition number estimators.
  ##   CONDEX(N, K, THETA) is a `counterexample' matrix to a condition
  ##   estimator.  It has order N and scalar parameter THETA (default 100).
  ##   If N is not equal to the `natural' size of the matrix then
  ##   the matrix is padded out with an identity matrix to order N.
  ##   The matrix, its natural size, and the estimator to which it applies
  ##   are specified by K (default K = 4) as follows:
  ##       K = 1:   4-by-4,     LINPACK (RCOND)
  ##       K = 2:   3-by-3,     LINPACK (RCOND)
  ##       K = 3:   arbitrary,  LINPACK (RCOND) (independent of THETA)
  ##       K = 4:   N >= 4,     SONEST (Higham 1988)
  ##   (Note that in practice the K = 4 matrix is not usually a
  ##    counterexample because of the rounding errors in forming it.)
  ##
  ##   References:
  ##   A.K. Cline and R.K. Rew, A set of counter-examples to three
  ##      condition number estimators, SIAM J. Sci. Stat. Comput.,
  ##      4 (1983), pp. 602-611.
  ##   N.J. Higham, FORTRAN codes for estimating the one-norm of a real or
  ##      complex matrix, with applications to condition estimation
  ##      (Algorithm 674), ACM Trans. Math. Soft., 14 (1988), pp. 381-396.

  if (nargin < 1 || nargin > 3)
    error ("gallery: 1 to 3 arguments are required for condex matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for condex matrix.");
  elseif (! isnumeric (k) || ! isscalar (k))
    error ("gallery: K must be a numeric scalar for condex matrix.");
  elseif (! isnumeric (theta) || ! isscalar (theta))
    error ("gallery: THETA must be a numeric scalar for condex matrix.");
  endif

  if (k == 1)       # Cline and Rew (1983), Example B.
    A = [1  -1  -2*theta     0
         0   1     theta  -theta
         0   1   1+theta  -(theta+1)
         0   0   0         theta];

  elseif (k == 2)   # Cline and Rew (1983), Example C.
    A = [1   1-2/theta^2  -2
         0   1/theta      -1/theta
         0   0             1];

  elseif (k == 3)   # Cline and Rew (1983), Example D.
    A = gallery ("triw", n, -1)';
    A(n,n) = -1;

  elseif (k == 4)   # Higham (1988), p. 390.
    x = ones (n, 3);            #  First col is e
    x(2:n,2) = zeros (n-1, 1);  #  Second col is e(1)

    ## Third col is special vector b in SONEST
    x(:, 3) = (-1).^[0:n-1]' .* ( 1 + [0:n-1]'/(n-1) );

    Q = orth (x);  #  Q*Q' is now the orthogonal projector onto span(e(1),e,b)).
    P = eye (n) - Q*Q';
    A = eye (n) + theta*P;

  else
    error ("gallery: unknown estimator K '%d' for condex matrix.", k);
  endif

  ## Pad out with identity as necessary.
  m = columns (A);
  if (m < n)
    for i = n:-1:m+1
      A(i,i) = 1;
    endfor
  endif
endfunction

function A = cycol (n, k = max (round (n/4), 1))
  ## CYCOL   Matrix whose columns repeat cyclically.
  ##   A = CYCOL([M N], K) is an M-by-N matrix of the form A = B(1:M,1:N)
  ##   where B = [C C C...] and C = RANDN(M, K).  Thus A's columns repeat
  ##   cyclically, and A has rank at most K.   K need not divide N.
  ##   K defaults to ROUND(N/4).
  ##   CYCOL(N, K), where N is a scalar, is the same as CYCOL([N N], K).
  ##
  ##   This type of matrix can lead to underflow problems for Gaussian
  ##   elimination: see NA Digest Volume 89, Issue 3 (January 22, 1989).

  if (nargin < 1 || nargin > 2)
    error ("gallery: 1 or 2 arguments are required for cycol matrix.");
  elseif (! isnumeric (n) || all (numel (n) != [1 2]) || fix (n) != n)
    error ("gallery: N must be a 1 or 2 element integer for cycol matrix.");
  elseif (! isnumeric (k) || ! isscalar (k))
    error ("gallery: K must be a scalar for cycol matrix.");
  endif

  ## Parameter n specifies dimension: m-by-n
  m = n(1);
  n = n(end);

  A = randn (m, k);
  for i = 2:ceil (n/k)
    A = [A A(:,1:k)];
  endfor
  A = A(:,1:n);
endfunction

function [c, d, e] = dorr (n, theta = 0.01)
  ## DORR  Dorr matrix - diagonally dominant, ill conditioned, tridiagonal.
  ##   [C, D, E] = DORR(N, THETA) returns the vectors defining a row diagonally
  ##   dominant, tridiagonal M-matrix that is ill conditioned for small
  ##   values of the parameter THETA >= 0.
  ##   If only one output parameter is supplied then
  ##   C = FULL(TRIDIAG(C,D,E)), i.e., the matrix iself is returned.
  ##   The columns of INV(C) vary greatly in norm.  THETA defaults to 0.01.
  ##   The amount of diagonal dominance is given by (ignoring rounding errors):
  ##         COMP(C)*ONES(N,1) = THETA*(N+1)^2 * [1 0 0 ... 0 1]'.
  ##
  ##   Reference:
  ##   F.W. Dorr, An example of ill-conditioning in the numerical
  ##   solution of singular perturbation problems, Math. Comp., 25 (1971),
  ##   pp. 271-283.

  if (nargin < 1 || nargin > 2)
    error ("gallery: 1 or 2 arguments are required for dorr matrix.");
  elseif (! isscalar (n) || ! isnumeric (n) || fix (n) != n)
    error ("gallery: N must be an integer for dorr matrix.");
  elseif (! isscalar (theta) || ! isnumeric (theta))
    error ("gallery: THETA must be a numeric scalar for dorr matrix.");
  endif

  c = zeros (n, 1);
  e = c;
  d = c;
  ##  All length n for convenience.  Make c, e of length n-1 later.

  h = 1/(n+1);
  m = floor ((n+1)/2);
  term = theta/h^2;

  i = (1:m)';
  c(i) = -term * ones (m, 1);
  e(i) = c(i) - (0.5-i*h)/h;
  d(i) = -(c(i) + e(i));

  i = (m+1:n)';
  e(i) = -term * ones (n-m, 1);
  c(i) = e(i) + (0.5-i*h)/h;
  d(i) = -(c(i) + e(i));

  c = c(2:n);
  e = e(1:n-1);

  if (nargout <= 1)
    c = tridiag (c, d, e);
  endif
endfunction

function A = dramadah (n, k = 1)
  ## DRAMADAH  A (0,1) matrix whose inverse has large integer entries.
  ##   An anti-Hadamard matrix A is a matrix with elements 0 or 1 for
  ##   which MU(A) := NORM(INV(A),'FRO') is maximal.
  ##   A = DRAMADAH(N, K) is an N-by-N (0,1) matrix for which MU(A) is
  ##   relatively large, although not necessarily maximal.
  ##   Available types (the default is K = 1):
  ##   K = 1: A is Toeplitz, with ABS(DET(A)) = 1, and MU(A) > c(1.75)^N,
  ##          where c is a constant.
  ##   K = 2: A is upper triangular and Toeplitz.
  ##   The inverses of both types have integer entries.
  ##
  ##   Another interesting (0,1) matrix:
  ##   K = 3: A has maximal determinant among (0,1) lower Hessenberg
  ##   matrices: det(A) = the n'th Fibonacci number.  A is Toeplitz.
  ##   The eigenvalues have an interesting distribution in the complex
  ##   plane.
  ##
  ##   References:
  ##   R.L. Graham and N.J.A. Sloane, Anti-Hadamard matrices,
  ##      Linear Algebra and Appl., 62 (1984), pp. 113-137.
  ##   L. Ching, The maximum determinant of an nxn lower Hessenberg
  ##      (0,1) matrix, Linear Algebra and Appl., 183 (1993), pp. 147-153.

  if (nargin < 1 || nargin > 2)
    error ("gallery: 1 to 2 arguments are required for dramadah matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for dramadah matrix.");
  elseif (! isnumeric (k) || ! isscalar (k))
    error ("gallery: K must be a numeric scalar for dramadah matrix.");
  endif

  switch (k)
    case (1)  # Toeplitz
      c = ones (n, 1);
      for i = 2:4:n
        m = min (1, n-i);
        c(i:i+m) = zeros (m+1, 1);
      endfor
      r = zeros (n, 1);
      r(1:4) = [1 1 0 1];
      if (n < 4)
        r = r(1:n);
      endif
      A = toeplitz (c, r);

    case (2)  # Upper triangular and Toeplitz
      c = zeros (n, 1);
      c(1) = 1;
      r = ones (n, 1);
      for i= 3:2:n
        r(i) = 0;
      endfor
      A = toeplitz (c, r);

    case (3)  # Lower Hessenberg
      c = ones (n, 1);
      for i= 2:2:n
        c(i) = 0;
      endfor
      A = toeplitz (c, [1 1 zeros(1,n-2)]);

    otherwise
      error ("gallery: unknown K '%d' for dramadah matrix.", k);
  endswitch
endfunction

function A = fiedler (c)
  ## FIEDLER  Fiedler matrix - symmetric.
  ##   FIEDLER(C), where C is an n-vector, is the n-by-n symmetric
  ##   matrix with elements ABS(C(i)-C(j)).
  ##   Special case: if C is a scalar, then A = FIEDLER(1:C)
  ##               (i.e. A(i,j) = ABS(i-j)).
  ##   Properties:
  ##   FIEDLER(N) has a dominant positive eigenvalue and all the other
  ##              eigenvalues are negative (Szego, 1936).
  ##   Explicit formulas for INV(A) and DET(A) are given by Todd (1977)
  ##   and attributed to Fiedler.  These indicate that INV(A) is
  ##   tridiagonal except for nonzero (1,n) and (n,1) elements.
  ##   [I think these formulas are valid only if the elements of
  ##   C are in increasing or decreasing order---NJH.]
  ##
  ##   References:
  ##   G. Szego, Solution to problem 3705, Amer. Math. Monthly,
  ##      43 (1936), pp. 246-259.
  ##   J. Todd, Basic Numerical Mathematics, Vol. 2: Numerical Algebra,
  ##      Birkhauser, Basel, and Academic Press, New York, 1977, p. 159.

  if (nargin != 1)
    error ("gallery: 1 argument is required for fiedler matrix.");
  elseif (! isnumeric (c))
    error ("gallery: C must be numeric for fiedler matrix.");
  endif

  n = numel (c);
  if (isscalar (c) && fix (c) == c)
    n = c;
    c = 1:n;
  elseif (n > 1 && isvector (c))
    ## do nothing
  else
    error ("gallery: C must be an integer or a vector for fiedler matrix.");
  endif
  c = c(:).';           # Ensure c is a row vector.

  A = ones (n, 1) * c;
  A = abs (A - A.');    # NB. array transpose.
endfunction

function A = forsythe (n, alpha = sqrt (eps), lambda = 0)
  ## FORSYTHE  Forsythe matrix - a perturbed Jordan block.
  ##   FORSYTHE(N, ALPHA, LAMBDA) is the N-by-N matrix equal to
  ##   JORDBLOC(N, LAMBDA) except it has an ALPHA in the (N,1) position.
  ##   It has the characteristic polynomial
  ##           DET(A-t*EYE) = (LAMBDA-t)^N - (-1)^N ALPHA.
  ##   ALPHA defaults to SQRT(EPS) and LAMBDA to 0.

  if (nargin < 1 || nargin > 3)
    error ("gallery: 1 to 3 arguments are required for forsythe matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for forsythe matrix.");
  elseif (! isnumeric (alpha) || ! isscalar (alpha))
    error ("gallery: ALPHA must be a numeric scalar for forsythe matrix.");
  elseif (! isnumeric (lambda) || ! isscalar (lambda))
    error ("gallery: LAMBDA must be a numeric scalar for forsythe matrix.");
  endif

  A = jordbloc (n, lambda);
  A(n,1) = alpha;
endfunction

function F = frank (n, k = 0)
  ## FRANK   Frank matrix---ill conditioned eigenvalues.
  ##   F = FRANK(N, K) is the Frank matrix of order N.  It is upper
  ##   Hessenberg with determinant 1.  K = 0 is the default; if K = 1 the
  ##   elements are reflected about the anti-diagonal (1,N)--(N,1).
  ##   F has all positive eigenvalues and they occur in reciprocal pairs
  ##   (so that 1 is an eigenvalue if N is odd).
  ##   The eigenvalues of F may be obtained in terms of the zeros of the
  ##   Hermite polynomials.
  ##   The FLOOR(N/2) smallest eigenvalues of F are ill conditioned,
  ##   the more so for bigger N.
  ##
  ##   DET(FRANK(N)') comes out far from 1 for large N---see Frank (1958)
  ##   and Wilkinson (1960) for discussions.
  ##
  ##   This version incorporates improvements suggested by W. Kahan.
  ##
  ##   References:
  ##   W.L. Frank, Computing eigenvalues of complex matrices by determinant
  ##      evaluation and by methods of Danilewski and Wielandt, J. Soc.
  ##      Indust. Appl. Math., 6 (1958), pp. 378-392 (see pp. 385, 388).
  ##   G.H. Golub and J.H. Wilkinson, Ill-conditioned eigensystems and the
  ##      computation of the Jordan canonical form, SIAM Review, 18 (1976),
  ##        pp. 578-619 (Section 13).
  ##   H. Rutishauser, On test matrices, Programmation en Mathematiques
  ##      Numeriques, Editions Centre Nat. Recherche Sci., Paris, 165,
  ##      1966, pp. 349-365.  Section 9.
  ##   J.H. Wilkinson, Error analysis of floating-point computation,
  ##      Numer. Math., 2 (1960), pp. 319-340 (Section 8).
  ##   J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University
  ##      Press, 1965 (pp. 92-93).
  ##   The next two references give details of the eigensystem, as does
  ##   Rutishauser (see above).
  ##   P.J. Eberlein, A note on the matrices denoted by B_n, SIAM J. Appl.
  ##      Math., 20 (1971), pp. 87-92.
  ##   J.M. Varah, A generalization of the Frank matrix, SIAM J. Sci. Stat.
  ##      Comput., 7 (1986), pp. 835-839.

  if (nargin < 1 || nargin > 2)
    error ("gallery: 1 to 2 arguments are required for frank matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for frank matrix.");
  elseif (! isnumeric (k) || ! isscalar (k))
    error ("gallery: K must be a numeric scalar for frank matrix.");
  endif

  p = n:-1:1;
  F = triu (p(ones (n, 1), :) - diag (ones (n-1, 1), -1), -1);

  switch (k)
    case (0), # do nothing
    case (1), F = F(p,p)';
    otherwise
      error ("gallery: K must have a value of 0 or 1 for frank matrix.");
  endswitch
endfunction

function c = gcdmat (n)
  if (nargin != 1)
    error ("gallery: 1 argument is required for gcdmat matrix.");
  elseif (! isscalar (n) || ! isnumeric (n) || fix (n) != n)
    error ("gallery: N must be an integer for gcdmat matrix.");
  endif
  c = gcd (repmat ((1:n)', [1 n]), repmat (1:n, [n 1]));
endfunction

function A = gearmat (n, i = n, j = -n)
  ## NOTE: this function was named gearm in the original Test Matrix Toolbox
  ## GEARMAT   Gear matrix.
  ##   A = GEARMAT(N,I,J) is the N-by-N matrix with ones on the sub- and
  ##   super-diagonals, SIGN(I) in the (1,ABS(I)) position, SIGN(J)
  ##   in the (N,N+1-ABS(J)) position, and zeros everywhere else.
  ##   Defaults: I = N, j = -N.
  ##   All eigenvalues are of the form 2*COS(a) and the eigenvectors
  ##   are of the form [SIN(w+a), SIN(w+2a), ..., SIN(w+Na)].
  ##   The values of a and w are given in the reference below.
  ##   A can have double and triple eigenvalues and can be defective.
  ##   GEARMAT(N) is singular.
  ##
  ##   (GEAR is a Simulink function, hence GEARMAT for Gear matrix.)
  ##   Reference:
  ##   C.W. Gear, A simple set of test matrices for eigenvalue programs,
  ##   Math. Comp., 23 (1969), pp. 119-125.

  if (nargin < 1 || nargin > 3)
    error ("gallery: 1 to 3 arguments are required for gearmat matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for gearmat matrix.");
  elseif (! isnumeric (i) || ! isscalar (i) || i == 0 || abs (i) > n)
    error ("gallery: I must be a nonzero scalar, and abs (I) <= N for gearmat matrix.");
  elseif (! isnumeric (j) || ! isscalar (j) || i == 0 || abs (j) > n)
    error ("gallery: J must be a nonzero scalar, and abs (J) <= N for gearmat matrix.");
  endif

  A = diag (ones (n-1, 1), -1) + diag (ones (n-1, 1), 1);
  A(1, abs (i)) = sign (i);
  A(n, n+1 - abs (j)) = sign (j);
endfunction

function G = grcar (n, k = 3)
  ## GRCAR     Grcar matrix - a Toeplitz matrix with sensitive eigenvalues.
  ##   GRCAR(N, K) is an N-by-N matrix with -1s on the
  ##   subdiagonal, 1s on the diagonal, and K superdiagonals of 1s.
  ##   The default is K = 3.  The eigenvalues of this matrix form an
  ##   interesting pattern in the complex plane (try PS(GRCAR(32))).
  ##
  ##   References:
  ##   J.F. Grcar, Operator coefficient methods for linear equations,
  ##        Report SAND89-8691, Sandia National Laboratories, Albuquerque,
  ##        New Mexico, 1989 (Appendix 2).
  ##   N.M. Nachtigal, L. Reichel and L.N. Trefethen, A hybrid GMRES
  ##        algorithm for nonsymmetric linear systems, SIAM J. Matrix Anal.
  ##        Appl., 13 (1992), pp. 796-825.

  if (nargin < 1 || nargin > 2)
    error ("gallery: 1 to 2 arguments are required for grcar matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for grcar matrix.");
  elseif (! isnumeric (k) || ! isscalar (k))
    error ("gallery: K must be a numeric scalar for grcar matrix.");
  endif

  G = tril (triu (ones (n)), k) - diag (ones (n-1, 1), -1);
endfunction

function A = hanowa (n, d = -1)
  ## HANOWA  A matrix whose eigenvalues lie on a vertical line in the complex plane.
  ##   HANOWA(N, d) is the N-by-N block 2x2 matrix (thus N = 2M must be even)
  ##                 [d*EYE(M)   -DIAG(1:M)
  ##                  DIAG(1:M)   d*EYE(M)]
  ##   It has complex eigenvalues lambda(k) = d +/- k*i  (1 <= k <= M).
  ##   Parameter d defaults to -1.
  ##
  ##   Reference:
  ##   E. Hairer, S.P. Norsett and G. Wanner, Solving Ordinary
  ##   Differential Equations I: Nonstiff Problems, Springer-Verlag,
  ##   Berlin, 1987. (pp. 86-87)

  if (nargin < 1 || nargin > 2)
    error ("gallery: 1 to 2 arguments are required for hanowa matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for hanowa matrix.");
  elseif (rem (n, 2) != 0)
    error ("gallery: N must be even for hanowa matrix.");
  elseif (! isnumeric (d) || ! isscalar (d))
    error ("gallery: D must be a numeric scalar for hanowa matrix.");
  endif

  m = n/2;
  A = [ d*eye(m)  -diag(1:m)
        diag(1:m)  d*eye(m) ];
endfunction

function [v, beta] = house (x)
  ## HOUSE   Householder matrix.
  ##   If [v, beta] = HOUSE(x) then H = EYE - beta*v*v' is a Householder
  ##   matrix such that Hx = -sign(x(1))*norm(x)*e_1.
  ##   NB: If x = 0 then v = 0, beta = 1 is returned.
  ##       x can be real or complex.
  ##       sign(x) := exp(i*arg(x)) ( = x./abs(x) when x ~= 0).
  ##
  ##   Theory: (textbook references Golub & Van Loan 1989, 38-43;
  ##            Stewart 1973, 231-234, 262; Wilkinson 1965, 48-50).
  ##   Hx = y: (I - beta*v*v')x = -s*e_1.
  ##   Must have |s| = norm(x), v = x+s*e_1, and
  ##   x'y = x'Hx =(x'Hx)' real => arg(s) = arg(x(1)).
  ##   So take s = sign(x(1))*norm(x) (which avoids cancellation).
  ##   v'v = (x(1)+s)^2 + x(2)^2 + ... + x(n)^2
  ##       = 2*norm(x)*(norm(x) + |x(1)|).
  ##
  ##   References:
  ##   G.H. Golub and C.F. Van Loan, Matrix Computations, second edition,
  ##      Johns Hopkins University Press, Baltimore, Maryland, 1989.
  ##   G.W. Stewart, Introduction to Matrix Computations, Academic Press,
  ##      New York, 1973,
  ##   J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University
  ##      Press, 1965.

  if (nargin != 1)
    error ("gallery: 1 argument is required for house matrix.");
  elseif (! isnumeric (x) || ! isvector (x))
    error ("gallery: X must be a vector for house matrix.");
  endif

  ## must be a column vector
  x = x(:);

  s = norm (x) * (sign (x(1)) + (x(1) == 0)); # Modification for sign (0) == 1.
  v = x;
  if (s == 0)
    ## Quit if x is the zero vector.
    beta = 1;
  else
    v(1) = v(1) + s;
    beta = 1/(s'*v(1));                       # NB the conjugated s.
    ##  beta = 1/(abs (s) * (abs (s) +abs(x(1)) would guarantee beta real.
    ##  But beta as above can be non-real (due to rounding) only when x is complex.
  endif
endfunction

function A = integerdata (varargin)

  if (nargin < 3)
    error ("gallery: At least 3 arguments required for integerdata matrix.");
  endif

  if (isnumeric (varargin{end}))
    jidx = varargin{end};
    svec = [varargin{:}];
    varargin(end) = [];
  elseif (ischar (varargin{end}))
    if (nargin < 4)
      error (["gallery: CLASS argument requires 4 inputs " ...
              "for integerdata matrix."]);
    endif
    jidx = varargin{end-1};
    svec = [varargin{1:end-1}];
    varargin(end-1) = [];
  else
    error (["gallery: J must be an integer in the range [0, 2^32-1] " ...
            "for integerdata matrix"]);
  endif

  if (! (isnumeric (jidx) && isscalar (jidx)
         && jidx == fix (jidx)
         && jidx >= 0 && jidx <= 0xFFFFFFFF))
    error (["gallery: J must be an integer in the range [0, 2^32-1] " ...
            "for integerdata matrix"]);
  endif

  ## Save and restore random state.  Initialization done so that reproducible
  ## data is available from gallery depending on the jidx and size vector.
  randstate = rand ("state");
  unwind_protect
    rand ("state", svec);
    A = randi (varargin{:});
  unwind_protect_cleanup
    rand ("state", randstate);
  end_unwind_protect

endfunction

function A = invhess (x, y)
  ## INVHESS  Inverse of an upper Hessenberg matrix.
  ##   INVHESS(X, Y), where X is an N-vector and Y an N-1 vector,
  ##   is the matrix whose lower triangle agrees with that of
  ##   ONES(N,1)*X' and whose strict upper triangle agrees with
  ##   that of [1 Y]*ONES(1,N).
  ##   The matrix is nonsingular if X(1) ~= 0 and X(i+1) ~= Y(i)
  ##   for all i, and its inverse is an upper Hessenberg matrix.
  ##   If Y is omitted it defaults to -X(1:N-1).
  ##   Special case: if X is a scalar INVHESS(X) is the same as
  ##   INVHESS(1:X).
  ##
  ##   References:
  ##   F.N. Valvi and V.S. Geroyannis, Analytic inverses and
  ##       determinants for a class of matrices, IMA Journal of Numerical
  ##       Analysis, 7 (1987), pp. 123-128.
  ##   W.-L. Cao and W.J. Stewart, A note on inverses of Hessenberg-like
  ##       matrices, Linear Algebra and Appl., 76 (1986), pp. 233-240.
  ##   Y. Ikebe, On inverses of Hessenberg matrices, Linear Algebra and
  ##       Appl., 24 (1979), pp. 93-97.
  ##   P. Rozsa, On the inverse of band matrices, Integral Equations and
  ##       Operator Theory, 10 (1987), pp. 82-95.

  if (nargin < 1 || nargin > 2)
    error ("gallery: 1 to 2 arguments are required for invhess matrix.");
  elseif (! isnumeric (x))
    error ("gallery: X must be numeric for invhess matrix.");
  endif

  if (isscalar (x) && fix (x) == x)
    n = x;
    x = 1:n;
  elseif (! isscalar (x) && isvector (x))
    n = numel (n);
  else
    error ("gallery: X must be an integer scalar, or a vector for invhess matrix.");
  endif

  if (nargin < 2)
    y = -x(1:end-1);
  elseif (! isvector (y) || numel (y) != numel (x) -1)
    error ("gallery: Y must be a vector of length -1 than X for invhess matrix.");
  endif

  x = x(:);
  y = y(:);

  ##  FIXME: On next line, z = x'; A = z(ones(n,1),:) would be more efficient.
  A = ones (n, 1) * x';
  for j = 2:n
    A(1:j-1,j) = y(1:j-1);
  endfor
endfunction

function A = invol (n)
  ## INVOL   An involutory matrix.
  ##   A = INVOL(N) is an N-by-N involutory (A*A = EYE(N)) and
  ##   ill-conditioned matrix.
  ##   It is a diagonally scaled version of HILB(N).
  ##   NB: B = (EYE(N)-A)/2 and B = (EYE(N)+A)/2 are idempotent (B*B = B).
  ##
  ##   Reference:
  ##   A.S. Householder and J.A. Carpenter, The singular values
  ##   of involutory and of idempotent matrices, Numer. Math. 5 (1963),
  ##   pp. 234-237.

  if (nargin != 1)
    error ("gallery: 1 argument is required for invol matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for invol matrix.");
  endif

  A = hilb (n);

  d = -n;
  A(:, 1) = d * A(:, 1);

  for i = 1:n-1
    d = -(n+i)*(n-i)*d/(i*i);
    A(i+1,:) = d * A(i+1,:);
  endfor
endfunction

function [A, detA] = ipjfact (n, k = 0)
  ## IPJFACT   A Hankel matrix with factorial elements.
  ##   A = IPJFACT(N, K) is the matrix with
  ##             A(i,j) = (i+j)!    (K = 0, default)
  ##             A(i,j) = 1/(i+j)!  (K = 1)
  ##   Both are Hankel matrices.
  ##   The determinant and inverse are known explicitly.
  ##   If a second output argument is present, d = DET(A) is returned:
  ##   [A, d] = IPJFACT(N, K);
  ##
  ##   Suggested by P. R. Graves-Morris.
  ##
  ##   Reference:
  ##   M.J.C. Gover, The explicit inverse of factorial Hankel matrices,
  ##   Dept. of Mathematics, University of Bradford, 1993.

  if (nargin < 1 || nargin > 2)
    error ("gallery: 1 to 2 arguments are required for ipjfact matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for ipjfact matrix.");
  elseif (! isnumeric (k) || ! isscalar (k))
    error ("gallery: K must be a numeric scalar for ipjfact matrix.");
  endif

  c = cumprod (2:n+1);
  d = cumprod (n+1:2*n) * c(n-1);

  A = hankel (c, d);

  switch (k)
    case (0), # do nothing
    case (1), A = ones (n) ./ A;
    otherwise
      error ("gallery: K must have a value of 0 or 1 for ipjfact matrix.");
  endswitch

  if (nargout == 2)
    d = 1;

    if (k == 0)
      for i = 1:n-1
        d *= prod (1:i+1) * prod (1:n-i);
      endfor
      d *= prod (1:n+1);

    elseif (k == 1)
      for i = 0:n-1
        d *= prod (1:i) / prod (1:n+1+i);
      endfor
      if (rem (n*(n-1)/2, 2))
        d = -d;
      endif

    else
      error ("gallery: K must have a value of 0 or 1 for ipjfact matrix.");
    endif

    detA = d;
  endif
endfunction

function J = jordbloc (n, lambda = 1)
  ## JORDBLOC  Jordan block.
  ##   JORDBLOC(N, LAMBDA) is the N-by-N Jordan block with eigenvalue
  ##   LAMBDA.  LAMBDA = 1 is the default.

  if (nargin < 1 || nargin > 2)
    error ("gallery: 1 to 2 arguments are required for jordbloc matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for jordbloc matrix.");
  elseif (! isnumeric (lambda) || ! isscalar (lambda))
    error ("gallery: LAMBDA must be a numeric scalar for jordbloc matrix.");
  endif

  J = lambda * eye (n) + diag (ones (n-1, 1), 1);
endfunction

function U = kahan (n, theta = 1.2, pert = 25)
  ## KAHAN  Kahan matrix - upper trapezoidal.
  ##   KAHAN(N, THETA) is an upper trapezoidal matrix
  ##   that has some interesting properties regarding estimation of
  ##   condition and rank.
  ##   The matrix is N-by-N unless N is a 2-vector, in which case it
  ##   is N(1)-by-N(2).
  ##   The parameter THETA defaults to 1.2.
  ##   The useful range of THETA is 0 < THETA < PI.
  ##
  ##   To ensure that the QR factorization with column pivoting does not
  ##   interchange columns in the presence of rounding errors, the diagonal
  ##   is perturbed by PERT*EPS*diag( [N:-1:1] ).
  ##   The default is PERT = 25, which ensures no interchanges for KAHAN(N)
  ##   up to at least N = 90 in IEEE arithmetic.
  ##   KAHAN(N, THETA, PERT) uses the given value of PERT.
  ##
  ##   The inverse of KAHAN(N, THETA) is known explicitly: see
  ##   Higham (1987, p. 588), for example.
  ##   The diagonal perturbation was suggested by Christian Bischof.
  ##
  ##   References:
  ##   W. Kahan, Numerical linear algebra, Canadian Math. Bulletin,
  ##      9 (1966), pp. 757-801.
  ##   N.J. Higham, A survey of condition number estimation for
  ##      triangular matrices, SIAM Review, 29 (1987), pp. 575-596.

  if (nargin < 1 || nargin > 3)
    error ("gallery: 1 to 3 arguments are required for kahan matrix.");
  elseif (! isnumeric (n) || all (numel (n) != [1 2]) || fix (n) != n)
    error ("gallery: N must be a 1 or 2 element integer for kahan matrix.");
  elseif (! isnumeric (theta) || ! isscalar (theta))
    error ("gallery: THETA must be a numeric scalar for kahan matrix.");
  elseif (! isnumeric (pert) || ! isscalar (pert))
    error ("gallery: PERT must be a numeric scalar for kahan matrix.");
  endif

  ## Parameter n specifies dimension: r-by-n
  r = n(1);
  n = n(end);

  s = sin (theta);
  c = cos (theta);

  U = eye (n) - c * triu (ones (n), 1);
  U = diag (s.^[0:n-1]) * U + pert*eps* diag ([n:-1:1]);
  if (r > n)
    U(r,n) = 0;     # Extend to an r-by-n matrix
  else
    U = U(1:r,:);   # Reduce to an r-by-n matrix
  endif
endfunction

function A = kms (n, rho = 0.5)
  ## KMS   Kac-Murdock-Szego Toeplitz matrix.
  ##   A = KMS(N, RHO) is the N-by-N Kac-Murdock-Szego Toeplitz matrix with
  ##   A(i,j) = RHO^(ABS((i-j))) (for real RHO).
  ##   If RHO is complex, then the same formula holds except that elements
  ##   below the diagonal are conjugated.
  ##   RHO defaults to 0.5.
  ##   Properties:
  ##      A has an LDL' factorization with
  ##               L = INV(TRIW(N,-RHO,1)'),
  ##               D(i,i) = (1-ABS(RHO)^2)*EYE(N) except D(1,1) = 1.
  ##      A is positive definite if and only if 0 < ABS(RHO) < 1.
  ##      INV(A) is tridiagonal.
  ##
  ##    Reference:
  ##    W.F. Trench, Numerical solution of the eigenvalue problem
  ##    for Hermitian Toeplitz matrices, SIAM J. Matrix Analysis and Appl.,
  ##    10 (1989), pp. 135-146 (and see the references therein).

  if (nargin < 1 || nargin > 2)
    error ("gallery: 1 to 2 arguments are required for lauchli matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for lauchli matrix.")
  elseif (! isscalar (rho))
    error ("gallery: RHO must be a scalar for lauchli matrix.")
  endif

  A = (1:n)'*ones (1,n);
  A = abs (A - A');
  A = rho .^ A;
  if (imag (rho))
    A = conj (tril (A,-1)) + triu (A);
  endif
endfunction

function B = krylov (A, x, j)
  ## KRYLOV    Krylov matrix.
  ##   KRYLOV(A, x, j) is the Krylov matrix
  ##        [x, Ax, A^2x, ..., A^(j-1)x],
  ##   where A is an n-by-n matrix and x is an n-vector.
  ##   Defaults: x = ONES(n,1), j = n.
  ##   KRYLOV(n) is the same as KRYLOV(RANDN(n)).
  ##
  ##   Reference:
  ##   G.H. Golub and C.F. Van Loan, Matrix Computations, second edition,
  ##   Johns Hopkins University Press, Baltimore, Maryland, 1989, p. 369.

  if (nargin < 1 || nargin > 3)
    error ("gallery: 1 to 3 arguments are required for krylov matrix.");
  elseif (! isnumeric (A) || ! issquare (A) || ndims (A) != 2)
    error ("gallery: A must be a square 2-D matrix for krylov matrix.");
  endif

  n = length (A);
  if (isscalar (A))
    n = A;
    A = randn (n);
  endif

  if (nargin < 2)
    x = ones (n, 1);
  elseif (! isvector (x) || numel (x) != n)
    error ("gallery: X must be a vector of length equal to A for krylov matrix.");
  endif

  if (nargin < 3)
    j = n;
  elseif (! isnumeric (j) || ! isscalar (j) || fix (j) != j)
    error ("gallery: J must be an integer for krylov matrix.");
  endif

  B = ones (n, j);
  B(:,1) = x(:);
  for i = 2:j
    B(:,i) = A*B(:,i-1);
  endfor
endfunction

function A = lauchli (n, mu = sqrt (eps))
  ## LAUCHLI   Lauchli matrix - rectangular.
  ##   LAUCHLI(N, MU) is the (N+1)-by-N matrix [ONES(1,N); MU*EYE(N))].
  ##   It is a well-known example in least squares and other problems
  ##   that indicates the dangers of forming A'*A.
  ##   MU defaults to SQRT(EPS).
  ##
  ##   Reference:
  ##   P. Lauchli, Jordan-Elimination und Ausgleichung nach
  ##   kleinsten Quadraten, Numer. Math, 3 (1961), pp. 226-240.

  if (nargin < 1 || nargin > 2)
    error ("gallery: 1 to 2 arguments are required for lauchli matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for lauchli matrix.");
  elseif (! isscalar (mu))
    error ("gallery: MU must be a scalar for lauchli matrix.");
  endif

  A = [ones(1, n)
       mu*eye(n) ];
endfunction

function A = lehmer (n)
  ## LEHMER  Lehmer matrix - symmetric positive definite.
  ##   A = LEHMER(N) is the symmetric positive definite N-by-N matrix with
  ##                    A(i,j) = i/j for j >= i.
  ##   A is totally nonnegative.  INV(A) is tridiagonal, and explicit
  ##   formulas are known for its entries.
  ##   N <= COND(A) <= 4*N*N.
  ##
  ##   References:
  ##   M. Newman and J. Todd, The evaluation of matrix inversion
  ##      programs, J. Soc. Indust. Appl. Math., 6 (1958), pp. 466-476.
  ##   Solutions to problem E710 (proposed by D.H. Lehmer): The inverse
  ##      of a matrix, Amer. Math. Monthly, 53 (1946), pp. 534-535.
  ##   J. Todd, Basic Numerical Mathematics, Vol. 2: Numerical Algebra,
  ##      Birkhauser, Basel, and Academic Press, New York, 1977, p. 154.

  if (nargin != 1)
    error ("gallery: 1 argument is required for lehmer matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for lehmer matrix.");
  endif

  A = ones (n, 1) * (1:n);
  A = A./A';
  A = tril (A) + tril (A, -1)';
endfunction

function T = lesp (n)
  ## LESP   A tridiagonal matrix with real, sensitive eigenvalues.
  ##   LESP(N) is an N-by-N matrix whose eigenvalues are real and smoothly
  ##   distributed in the interval approximately [-2*N-3.5, -4.5].
  ##   The sensitivities of the eigenvalues increase exponentially as
  ##   the eigenvalues grow more negative.
  ##   The matrix is similar to the symmetric tridiagonal matrix with
  ##   the same diagonal entries and with off-diagonal entries 1,
  ##   via a similarity transformation with D = diag(1!,2!,...,N!).
  ##
  ##   References:
  ##   H.W.J. Lenferink and M.N. Spijker, On the use of stability regions in
  ##        the numerical analysis of initial value problems,
  ##        Math. Comp., 57 (1991), pp. 221-237.
  ##   L.N. Trefethen, Pseudospectra of matrices, in Numerical Analysis 1991,
  ##        Proceedings of the 14th Dundee Conference,
  ##        D.F. Griffiths and G.A. Watson, eds, Pitman Research Notes in
  ##        Mathematics, volume 260, Longman Scientific and Technical, Essex,
  ##        UK, 1992, pp. 234-266.

  if (nargin != 1)
    error ("gallery: 1 argument is required for lesp matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for lesp matrix.");
  endif

  x = 2:n;
  T = full (tridiag (ones (size (x)) ./x, -(2*[x n+1]+1), x));
endfunction

function A = lotkin (n)
  ## LOTKIN  Lotkin matrix.
  ##   A = LOTKIN(N) is the Hilbert matrix with its first row altered to
  ##   all ones.  A is unsymmetric, ill-conditioned, and has many negative
  ##   eigenvalues of small magnitude.
  ##   The inverse has integer entries and is known explicitly.
  ##
  ##   Reference:
  ##   M. Lotkin, A set of test matrices, MTAC, 9 (1955), pp. 153-161.

  if (nargin != 1)
    error ("gallery: 1 argument is required for lotkin matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for lotkin matrix.");
  endif

  A = hilb (n);
  A(1,:) = ones (1, n);
endfunction

function A = minij (n)
  ## MINIJ   Symmetric positive definite matrix MIN(i,j).
  ##   A = MINIJ(N) is the N-by-N symmetric positive definite matrix with
  ##   A(i,j) = MIN(i,j).
  ##   Properties, variations:
  ##   INV(A) is tridiagonal: it is minus the second difference matrix
  ##               except its (N,N) element is 1.
  ##   2*A-ONES(N) (Givens' matrix) has tridiagonal inverse and
  ##               eigenvalues .5*sec^2([2r-1)PI/4N], r=1:N.
  ##   (N+1)*ONES(N)-A also has a tridiagonal inverse.
  ##
  ##   References:
  ##   J. Todd, Basic Numerical Mathematics, Vol. 2: Numerical Algebra,
  ##      Birkhauser, Basel, and Academic Press, New York, 1977, p. 158.
  ##   D.E. Rutherford, Some continuant determinants arising in physics and
  ##      chemistry---II, Proc. Royal Soc. Edin., 63, A (1952), pp. 232-241.
  ##      (For the eigenvalues of Givens' matrix.)

  if (nargin != 1)
    error ("gallery: 1 argument is required for minij matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for minij matrix.");
  endif

  A = bsxfun (@min, 1:n, (1:n)');
endfunction

function A = moler (n, alpha = -1)
  ## MOLER   Moler matrix - symmetric positive definite.
  ##   A = MOLER(N, ALPHA) is the symmetric positive definite N-by-N matrix
  ##   U'*U where U = TRIW(N, ALPHA).
  ##   For ALPHA = -1 (the default) A(i,j) = MIN(i,j)-2, A(i,i) = i.
  ##   A has one small eigenvalue.
  ##
  ##   Nash (1990) attributes the ALPHA = -1 matrix to Moler.
  ##
  ##   Reference:
  ##   J.C. Nash, Compact Numerical Methods for Computers: Linear
  ##   Algebra and Function Minimisation, second edition, Adam Hilger,
  ##   Bristol, 1990 (Appendix 1).

  if (nargin < 1 || nargin > 2)
    error ("gallery: 1 to 2 arguments are required for moler matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for moler matrix.");
  elseif (! isscalar (alpha))
    error ("gallery: ALPHA must be a scalar for moler matrix.");
  endif

  A = triw (n, alpha)' * triw (n, alpha);
endfunction

function [A, T] = neumann (n)
  ## NEUMANN  Singular matrix from the discrete Neumann problem (sparse).
  ##   NEUMANN(N) is the singular, row diagonally dominant matrix resulting
  ##   from discretizing the Neumann problem with the usual five point
  ##   operator on a regular mesh.
  ##   It has a one-dimensional null space with null vector ONES(N,1).
  ##   The dimension N should be a perfect square, or else a 2-vector,
  ##   in which case the dimension of the matrix is N(1)*N(2).
  ##
  ##   Reference:
  ##   R.J. Plemmons, Regular splittings and the discrete Neumann
  ##   problem, Numer. Math., 25 (1976), pp. 153-161.

  if (nargin != 1)
    error ("gallery: 1 argument is required for neumann matrix.");
  elseif (! isnumeric (n) || all (numel (n) != [1 2]) || fix (n) != n)
    error ("gallery: N must be a 1 or 2 element integer for neumann matrix.");
  endif

  if (isscalar (n))
    m = sqrt (n);
    if (m^2 != n)
      error ("gallery: N must be a perfect square for neumann matrix.");
    endif
    n(1) = m;
    n(2) = m;
  endif

  T = tridiag (n(1), -1, 2, -1);
  T(1,2) = -2;
  T(n(1),n(1)-1) = -2;

  A = kron (T, eye (n(2))) + kron (eye (n(2)), T);
endfunction

function A = normaldata (varargin)

  if (nargin < 2)
    error ("gallery: At least 2 arguments required for normaldata matrix.");
  endif
  if (isnumeric (varargin{end}))
    jidx = varargin{end};
    svec = [varargin{:}];
    varargin(end) = [];
  elseif (ischar (varargin{end}))
    if (nargin < 3)
      error (["gallery: CLASS argument requires 3 inputs " ...
              "for normaldata matrix."]);
    endif
    jidx = varargin{end-1};
    svec = [varargin{1:end-1}];
    varargin(end-1) = [];
  else
    error (["gallery: J must be an integer in the range [0, 2^32-1] " ...
            "for normaldata matrix"]);
  endif

  if (! (isnumeric (jidx) && isscalar (jidx)
         && jidx == fix (jidx)
         && jidx >= 0 && jidx <= 0xFFFFFFFF))
    error (["gallery: J must be an integer in the range [0, 2^32-1] " ...
            "for normaldata matrix"]);
  endif

  ## Save and restore random state.  Initialization done so that reproducible
  ## data is available from gallery depending on the jidx and size vector.
  randstate = randn ("state");
  unwind_protect
    randn ("state", svec);
    A = randn (varargin{:});
  unwind_protect_cleanup
    randn ("state", randstate);
  end_unwind_protect

endfunction

function Q = orthog (n, k = 1)
  ## ORTHOG Orthogonal and nearly orthogonal matrices.
  ##   Q = ORTHOG(N, K) selects the K'th type of matrix of order N.
  ##   K > 0 for exactly orthogonal matrices, K < 0 for diagonal scalings of
  ##   orthogonal matrices.
  ##   Available types: (K = 1 is the default)
  ##   K = 1:  Q(i,j) = SQRT(2/(n+1)) * SIN( i*j*PI/(n+1) )
  ##           Symmetric eigenvector matrix for second difference matrix.
  ##   K = 2:  Q(i,j) = 2/SQRT(2*n+1)) * SIN( 2*i*j*PI/(2*n+1) )
  ##           Symmetric.
  ##   K = 3:  Q(r,s) = EXP(2*PI*i*(r-1)*(s-1)/n) / SQRT(n)  (i=SQRT(-1))
  ##           Unitary, the Fourier matrix.  Q^4 is the identity.
  ##           This is essentially the same matrix as FFT(EYE(N))/SQRT(N)!
  ##   K = 4:  Helmert matrix: a permutation of a lower Hessenberg matrix,
  ##           whose first row is ONES(1:N)/SQRT(N).
  ##   K = 5:  Q(i,j) = SIN( 2*PI*(i-1)*(j-1)/n ) + COS( 2*PI*(i-1)*(j-1)/n ).
  ##           Symmetric matrix arising in the Hartley transform.
  ##   K = -1: Q(i,j) = COS( (i-1)*(j-1)*PI/(n-1) )
  ##           Chebyshev Vandermonde-like matrix, based on extrema of T(n-1).
  ##   K = -2: Q(i,j) = COS( (i-1)*(j-1/2)*PI/n) )
  ##           Chebyshev Vandermonde-like matrix, based on zeros of T(n).
  ##
  ##   References:
  ##   N.J. Higham and D.J. Higham, Large growth factors in Gaussian
  ##        elimination with pivoting, SIAM J. Matrix Analysis and  Appl.,
  ##        10 (1989), pp. 155-164.
  ##   P. Morton, On the eigenvectors of Schur's matrix, J. Number Theory,
  ##        12 (1980), pp. 122-127. (Re. ORTHOG(N, 3))
  ##   H.O. Lancaster, The Helmert Matrices, Amer. Math. Monthly, 72 (1965),
  ##        pp. 4-12.
  ##   D. Bini and P. Favati, On a matrix algebra related to the discrete
  ##        Hartley transform, SIAM J. Matrix Anal. Appl., 14 (1993),
  ##        pp. 500-507.

  if (nargin < 1 || nargin > 2)
    error ("gallery: 1 to 2 arguments are required for orthog matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for orthog matrix.");
  elseif (! isnumeric (k) || ! isscalar (k))
    error ("gallery: K must be a numeric scalar for orthog matrix.");
  endif

  switch (k)
    case (1)
      ## E'vectors second difference matrix
      m = (1:n)'*(1:n) * (pi/(n+1));
      Q = sin (m) * sqrt (2/(n+1));

    case (2)
      m = (1:n)'*(1:n) * (2*pi/(2*n+1));
      Q = sin (m) * (2/ sqrt (2*n+1));

    case (3)
      ## Vandermonde based on roots of unity
      m = 0:n-1;
      Q = exp (m'*m*2*pi* sqrt (-1) / n) / sqrt (n);

    case (4)
      ## Helmert matrix
      Q = tril (ones (n));
      Q(1,2:n) = ones (1, n-1);
      for i = 2:n
        Q(i,i) = -(i-1);
      endfor
      Q = diag (sqrt ([n 1:n-1] .* [1:n])) \ Q;

    case (5)
      ## Hartley matrix
      m = (0:n-1)'*(0:n-1) * (2*pi/n);
      Q = (cos (m) + sin (m)) / sqrt (n);

    case (-1)
      ##  extrema of T(n-1)
      m = (0:n-1)'*(0:n-1) * (pi/(n-1));
      Q = cos (m);

    case (-2)
      ## zeros of T(n)
      m = (0:n-1)'*(.5:n-.5) * (pi/n);
      Q = cos (m);

    otherwise
      error ("gallery: unknown K '%d' for orthog matrix.", k);
  endswitch
endfunction

function A = parter (n)
  ## PARTER    Parter matrix - a Toeplitz matrix with singular values near PI.
  ##   PARTER(N) is the matrix with (i,j) element 1/(i-j+0.5).
  ##   It is a Cauchy matrix and a Toeplitz matrix.
  ##
  ##   At the Second SIAM Conference on Linear Algebra, Raleigh, N.C.,
  ##   1985, Cleve Moler noted that most of the singular values of
  ##   PARTER(N) are very close to PI.  An explanation of the phenomenon
  ##   was given by Parter; see also the paper by Tyrtyshnikov.
  ##
  ##   References:
  ##   The MathWorks Newsletter, Volume 1, Issue 1, March 1986, page 2.
  ##   S.V. Parter, On the distribution of the singular values of Toeplitz
  ##        matrices, Linear Algebra and Appl., 80 (1986), pp. 115-130.
  ##   E.E. Tyrtyshnikov, Cauchy-Toeplitz matrices and some applications,
  ##        Linear Algebra and Appl., 149 (1991), pp. 1-18.

  if (nargin != 1)
    error ("gallery: 1 argument is required for parter matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for parter matrix.");
  endif

  A = cauchy ((1:n) + 0.5, -(1:n));
endfunction

function P = pei (n, alpha = 1)
  ## PEI    Pei matrix.
  ##   PEI(N, ALPHA), where ALPHA is a scalar, is the symmetric matrix
  ##   ALPHA*EYE(N) + ONES(N).
  ##   If ALPHA is omitted then ALPHA = 1 is used.
  ##   The matrix is singular for ALPHA = 0, -N.
  ##
  ##   Reference:
  ##   M.L. Pei, A test matrix for inversion procedures,
  ##   Comm. ACM, 5 (1962), p. 508.

  if (nargin < 1 || nargin > 2)
    error ("gallery: 1 to 2 arguments are required for pei matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for pei matrix.");
  elseif (! isnumeric (alpha) || ! isscalar (alpha))
    error ("gallery: ALPHA must be a scalar for pei matrix.");
  endif

  P = alpha * eye (n) + ones (n);
endfunction

function A = poisson (n)
  ## POISSON   Block tridiagonal matrix from Poisson's equation (sparse).
  ##   POISSON(N) is the block tridiagonal matrix of order N^2
  ##   resulting from discretizing Poisson's equation with the
  ##   5-point operator on an N-by-N mesh.
  ##
  ##   Reference:
  ##   G.H. Golub and C.F. Van Loan, Matrix Computations, second edition,
  ##   Johns Hopkins University Press, Baltimore, Maryland, 1989
  ##   (Section 4.5.4).

  if (nargin != 1)
    error ("gallery: 1 argument is required for poisson matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for poisson matrix.");
  endif

  S = tridiag (n, -1, 2, -1);
  I = speye (n);
  A = kron (I, S) + kron (S, I);
endfunction

function A = prolate (n, w = 0.25)
  ## PROLATE   Prolate matrix - symmetric, ill-conditioned Toeplitz matrix.
  ##   A = PROLATE(N, W) is the N-by-N prolate matrix with parameter W.
  ##   It is a symmetric Toeplitz matrix.
  ##   If 0 < W < 0.5 then
  ##      - A is positive definite
  ##      - the eigenvalues of A are distinct, lie in (0, 1), and
  ##        tend to cluster around 0 and 1.
  ##   W defaults to 0.25.
  ##
  ##   Reference:
  ##   J.M. Varah. The Prolate matrix. Linear Algebra and Appl.,
  ##   187:269--278, 1993.

  if (nargin < 1 || nargin > 2)
    error ("gallery: 1 to 2 arguments are required for prolate matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for prolate matrix.");
  elseif (! isnumeric (w) || ! isscalar (w))
    error ("gallery: W must be a scalar for prolate matrix.");
  endif

  a      = zeros (n, 1);
  a(1)   = 2*w;
  a(2:n) = sin (2*pi*w*(1:n-1)) ./ (pi*(1:n-1));

  A = toeplitz (a);
endfunction

function H = randhess (x)
  ## NOTE: this function was named ohess in the original Test Matrix Toolbox
  ## RANDHESS  Random, orthogonal upper Hessenberg matrix.
  ##   H = RANDHESS(N) is an N-by-N real, random, orthogonal
  ##   upper Hessenberg matrix.
  ##   Alternatively, H = RANDHESS(X), where X is an arbitrary real
  ##   N-vector (N > 1) constructs H non-randomly using the elements
  ##   of X as parameters.
  ##   In both cases H is constructed via a product of N-1 Givens rotations.
  ##
  ##   Note: See Gragg (1986) for how to represent an N-by-N (complex)
  ##   unitary Hessenberg matrix with positive subdiagonal elements in terms
  ##   of 2N-1 real parameters (the Schur parametrization).
  ##   This M-file handles the real case only and is intended simply as a
  ##   convenient way to generate random or non-random orthogonal Hessenberg
  ##   matrices.
  ##
  ##   Reference:
  ##   W.B. Gragg, The QR algorithm for unitary Hessenberg matrices,
  ##   J. Comp. Appl. Math., 16 (1986), pp. 1-8.

  if (nargin != 1)
    error ("gallery: 1 argument is required for randhess matrix.");
  elseif (! isnumeric (x) || ! isreal (x))
    error ("gallery: N or X must be numeric real values for randhess matrix.");
  endif

  if (isscalar (x))
    n = x;
    x = rand (n-1, 1) * 2*pi;
    H = eye (n);
    H(n,n) = sign (randn);
  elseif (isvector (x))
    n = numel (x);
    H = eye (n);
    H(n,n) = sign (x(n)) + (x(n) == 0); # Second term ensures H(n,n) nonzero.
  else
    error ("gallery: N or X must be a scalar or a vector for randhess matrix.");
  endif

  for i = n:-1:2
    ## Apply Givens rotation through angle x(i-1).
    theta = x(i-1);
    c = cos (theta);
    s = sin (theta);
    H([i-1 i], :) = [ c*H(i-1,:)+s*H(i,:)
                     -s*H(i-1,:)+c*H(i,:) ];
  endfor
endfunction

function A = rando (n, k = 1)
  ## RANDO   Random matrix with elements -1, 0 or 1.
  ##   A = RANDO(N, K) is a random N-by-N matrix with elements from
  ##   one of the following discrete distributions (default K = 1):
  ##     K = 1:  A(i,j) =  0 or 1    with equal probability,
  ##     K = 2:  A(i,j) = -1 or 1    with equal probability,
  ##     K = 3:  A(i,j) = -1, 0 or 1 with equal probability.
  ##   N may be a 2-vector, in which case the matrix is N(1)-by-N(2).

  if (nargin < 1 || nargin > 2)
    error ("gallery: 1 to 2 arguments are required for rando matrix.");
  elseif (! isnumeric (n) || all (numel (n) != [1 2]) || fix (n) != n)
    error ("gallery: N must be an integer for rando matrix.");
  elseif (! isnumeric (k) || ! isscalar (k))
    error ("gallery: K must be a numeric scalar for smoke matrix.");
  endif

  ## Parameter n specifies dimension: m-by-n.
  m = n(1);
  n = n(end);

  switch (k)
    case (1), A =   floor (  rand(m, n) + 0.5);     # {0, 1}
    case (2), A = 2*floor (  rand(m, n) + 0.5) -1;  # {-1, 1}
    case (3), A =   round (3*rand(m, n) - 1.5);     # {-1, 0, 1}
    otherwise
      error ("gallery: unknown K '%d' for smoke matrix.", k);
  endswitch

endfunction

function A = randsvd (n, kappa = sqrt (1/eps), mode = 3, kl = max (n) -1,
                      ku = kl)
  ## RANDSVD  Random matrix with pre-assigned singular values.
  ##   RANDSVD(N, KAPPA, MODE, KL, KU) is a (banded) random matrix of order N
  ##   with COND(A) = KAPPA and singular values from the distribution MODE.
  ##   N may be a 2-vector, in which case the matrix is N(1)-by-N(2).
  ##   Available types:
  ##          MODE = 1:   one large singular value,
  ##          MODE = 2:   one small singular value,
  ##          MODE = 3:   geometrically distributed singular values,
  ##          MODE = 4:   arithmetically distributed singular values,
  ##          MODE = 5:   random singular values with unif. dist. logarithm.
  ##   If omitted, MODE defaults to 3, and KAPPA defaults to SQRT(1/EPS).
  ##   If MODE < 0 then the effect is as for ABS(MODE) except that in the
  ##   original matrix of singular values the order of the diagonal entries
  ##   is reversed: small to large instead of large to small.
  ##   KL and KU are the lower and upper bandwidths respectively; if they
  ##   are omitted a full matrix is produced.
  ##   If only KL is present, KU defaults to KL.
  ##   Special case: if KAPPA < 0 then a random full symmetric positive
  ##                 definite matrix is produced with COND(A) = -KAPPA and
  ##                 eigenvalues distributed according to MODE.
  ##                 KL and KU, if present, are ignored.
  ##
  ##   Reference:
  ##   N.J. Higham, Accuracy and Stability of Numerical Algorithms,
  ##      Society for Industrial and Applied Mathematics, Philadelphia, PA,
  ##      USA, 1996; sec. 26.3.
  ##
  ##   This routine is similar to the more comprehensive Fortran routine xLATMS
  ##   in the following reference:
  ##   J.W. Demmel and A. McKenney, A test matrix generation suite,
  ##   LAPACK Working Note #9, Courant Institute of Mathematical Sciences,
  ##   New York, 1989.

  if (nargin < 1 || nargin > 5)
    error ("gallery: 1 to 5 arguments are required for randsvd matrix.");
  elseif (! isnumeric (n) || all (numel (n) != [1 2]) || fix (n) != n)
    error ("gallery: N must be a 1 or 2 element integer vector for randsvd matrix.");
  elseif (! isnumeric (kappa) || ! isscalar (kappa))
    error ("gallery: KAPPA must be a numeric scalar for randsvd matrix.");
  elseif (abs (kappa) < 1)
    error ("gallery: KAPPA must larger than or equal to 1 for randsvd matrix.");
  elseif (! isnumeric (mode) || ! isscalar (mode))
    error ("gallery: MODE must be a numeric scalar for randsvd matrix.");
  elseif (! isnumeric (kl) || ! isscalar (kl))
    error ("gallery: KL must be a numeric scalar for randsvd matrix.");
  elseif (! isnumeric (ku) || ! isscalar (ku))
    error ("gallery: KU must be a numeric scalar for randsvd matrix.");
  endif

  posdef = 0;
  if (kappa < 0)
    posdef = 1;
    kappa  = -kappa;
  endif

  ## Parameter n specifies dimension: m-by-n.
  m = n(1);
  n = n(end);
  p = min ([m n]);

  ## If A will be a vector
  if (p == 1)
    A = randn (m, n);
    A /= norm (A);
    return;
  endif

  ##  Set up vector sigma of singular values.
  switch (abs (mode))
    case (1)
      sigma = ones (p, 1) ./ kappa;
      sigma(1) = 1;
    case (2)
      sigma = ones (p, 1);
      sigma(p) = 1 / kappa;
    case (3)
      factor = kappa^(-1/(p-1));
      sigma  = factor.^[0:p-1];
    case (4)
      sigma = ones (p, 1) - (0:p-1)'/(p-1)*(1-1/kappa);
    case (5)
      ## In this case cond (A) <= kappa.
      rand ("uniform");
      sigma = exp (-rand (p, 1) * log (kappa));
    otherwise
      error ("gallery: unknown MODE '%d' for randsvd matrix.", mode);
  endswitch

  ##  Convert to diagonal matrix of singular values.
  if (mode < 0)
    sigma = sigma(p:-1:1);
  endif
  sigma = diag (sigma);

  if (posdef)
    ## handle case where KAPPA was negative
    Q = qmult (p);
    A = Q' * sigma * Q;
    A = (A + A') / 2;  # Ensure matrix is symmetric.
    return;
  endif

  if (m != n)
    ## Expand to m-by-n diagonal matrix
    sigma(m, n) = 0;
  endif

  if (kl == 0 && ku == 0)
    ## Diagonal matrix requested - nothing more to do.
    A = sigma;
  else
    ##  A = U*sigma*V, where U, V are random orthogonal matrices from the
    ##  Haar distribution.
    A = qmult (sigma');
    A = qmult (A');

    if (kl < n-1 || ku < n-1)
      ## Bandwidth reduction
      A = bandred (A, kl, ku);
    endif
  endif
endfunction

function A = redheff (n)
  ## REDHEFF    A (0,1) matrix of Redheffer associated with the Riemann hypothesis.
  ##   A = REDHEFF(N) is an N-by-N matrix of 0s and 1s defined by
  ##       A(i,j) = 1 if j = 1 or if i divides j,
  ##       A(i,j) = 0 otherwise.
  ##   It has N - FLOOR(LOG2(N)) - 1 eigenvalues equal to 1,
  ##   a real eigenvalue (the spectral radius) approximately SQRT(N),
  ##   a negative eigenvalue approximately -SQRT(N),
  ##   and the remaining eigenvalues are provably ``small''.
  ##   Barrett and Jarvis (1992) conjecture that
  ##     ``the small eigenvalues all lie inside the unit circle
  ##       ABS(Z) = 1'',
  ##   and a proof of this conjecture, together with a proof that some
  ##   eigenvalue tends to zero as N tends to infinity, would yield
  ##   a new proof of the prime number theorem.
  ##   The Riemann hypothesis is true if and only if
  ##   DET(A) = O( N^(1/2+epsilon) ) for every epsilon > 0
  ##                                     (`!' denotes factorial).
  ##   See also RIEMANN.
  ##
  ##   Reference:
  ##   W.W. Barrett and T.J. Jarvis,
  ##   Spectral Properties of a Matrix of Redheffer,
  ##   Linear Algebra and Appl., 162 (1992), pp. 673-683.

  if (nargin != 1)
    error ("gallery: 1 argument is required for redheff matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for redheff matrix.");
  endif

  i = (1:n)' * ones (1, n);
  A = ! rem (i', i);
  A(:,1) = ones (n, 1);
endfunction

function A = riemann (n)
  ## RIEMANN    A matrix associated with the Riemann hypothesis.
  ##   A = RIEMANN(N) is an N-by-N matrix for which the
  ##   Riemann hypothesis is true if and only if
  ##   DET(A) = O( N! N^(-1/2+epsilon) ) for every epsilon > 0
  ##                                     (`!' denotes factorial).
  ##   A = B(2:N+1, 2:N+1), where
  ##   B(i,j) = i-1 if i divides j and -1 otherwise.
  ##   Properties include, with M = N+1:
  ##      Each eigenvalue E(i) satisfies ABS(E(i)) <= M - 1/M.
  ##      i <= E(i) <= i+1 with at most M-SQRT(M) exceptions.
  ##      All integers in the interval (M/3, M/2] are eigenvalues.
  ##
  ##   See also REDHEFF.
  ##
  ##   Reference:
  ##   F. Roesler, Riemann's hypothesis as an eigenvalue problem,
  ##   Linear Algebra and Appl., 81 (1986), pp. 153-198.

  if (nargin != 1)
    error ("gallery: 1 argument is required for riemann matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for riemann matrix.");
  endif

  n += 1;
  i = (2:n)' * ones (1, n-1);
  j = i';
  A = i .* (! rem (j, i)) - ones (n-1);
endfunction

function A = ris (n)
  ## NOTE: this function was named dingdong in the original Test Matrix Toolbox
  ## RIS       Dingdong matrix - a symmetric Hankel matrix.
  ##   A = RIS(N) is the symmetric N-by-N Hankel matrix with
  ##                  A(i,j) = 0.5/(N-i-j+1.5).
  ##   The eigenvalues of A cluster around PI/2 and -PI/2.
  ##
  ##   Invented by F.N. Ris.
  ##
  ##   Reference:
  ##   J.C. Nash, Compact Numerical Methods for Computers: Linear
  ##   Algebra and Function Minimisation, second edition, Adam Hilger,
  ##   Bristol, 1990 (Appendix 1).

  if (nargin != 1)
    error ("gallery: 1 argument is required for ris matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for ris matrix.");
  endif

  p = -2*(1:n) + (n+1.5);
  A = cauchy (p);
endfunction

function A = smoke (n, k = 0)
  ## SMOKE     Smoke matrix - complex, with a `smoke ring' pseudospectrum.
  ##   SMOKE(N) is an N-by-N matrix with 1s on the
  ##   superdiagonal, 1 in the (N,1) position, and powers of
  ##   roots of unity along the diagonal.
  ##   SMOKE(N, 1) is the same except for a zero (N,1) element.
  ##   The eigenvalues of SMOKE(N, 1) are the N'th roots of unity;
  ##   those of SMOKE(N) are the N'th roots of unity times 2^(1/N).
  ##
  ##   Try PS(SMOKE(32)).  For SMOKE(N, 1) the pseudospectrum looks
  ##   like a sausage folded back on itself.
  ##   GERSH(SMOKE(N, 1)) is interesting.
  ##
  ##   Reference:
  ##   L. Reichel and L.N. Trefethen, Eigenvalues and pseudo-eigenvalues of
  ##   Toeplitz matrices, Linear Algebra and Appl., 162-164:153-185, 1992.

  if (nargin < 1 || nargin > 2)
    error ("gallery: 1 to 2 arguments are required for smoke matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be an integer for smoke matrix.");
  elseif (! isnumeric (n) || ! isscalar (n))
    error ("gallery: K must be a numeric scalar for smoke matrix.");
  endif

  w = exp (2*pi*i/n);
  A = diag ( [w.^(1:n-1) 1] ) + diag (ones (n-1,1), 1);

  switch (k)
    case (0), A(n,1) = 1;
    case (1), # do nothing
    otherwise,
      error ("gallery: K must have a value of 0 or 1 for smoke matrix.");
  endswitch
endfunction

function T = toeppd (n, m = n, w = rand (m,1), theta = rand (m,1))
  ## NOTE: this function was named pdtoep in the original Test Matrix Toolbox
  ## TOEPPD   Symmetric positive definite Toeplitz matrix.
  ##   TOEPPD(N, M, W, THETA) is an N-by-N symmetric positive (semi-)
  ##   definite (SPD) Toeplitz matrix, comprised of the sum of M rank 2
  ##   (or, for certain THETA, rank 1) SPD Toeplitz matrices.
  ##   Specifically,
  ##           T = W(1)*T(THETA(1)) + ... + W(M)*T(THETA(M)),
  ##   where T(THETA(k)) has (i,j) element COS(2*PI*THETA(k)*(i-j)).
  ##   Defaults: M = N, W = RAND(M,1), THETA = RAND(M,1).
  ##
  ##   Reference:
  ##   G. Cybenko and C.F. Van Loan, Computing the minimum eigenvalue of
  ##   a symmetric positive definite Toeplitz matrix, SIAM J. Sci. Stat.
  ##   Comput., 7 (1986), pp. 123-131.

  if (nargin < 1 || nargin > 4)
    error ("gallery: 1 to 4 arguments are required for toeppd matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be a numeric integer for toeppd matrix.");
  elseif (! isnumeric (m) || ! isscalar (m) || fix (m) != m)
    error ("gallery: M must be a numeric integer for toeppd matrix.");
  elseif (numel (w) != m || numel (theta) != m)
    error ("gallery: W and THETA must be vectors of length M for toeppd matrix.");
  endif

  T = zeros (n);
  E = 2*pi * ((1:n)' * ones (1, n) - ones (n, 1) * (1:n));

  for i = 1:m
    T += w(i) * cos (theta(i)*E);
  endfor
endfunction

function P = toeppen (n, a = 1, b = -10, c = 0, d = 10, e = 1)
  ## NOTE: this function was named pentoep in the original Test Matrix Toolbox
  ## TOEPPEN   Pentadiagonal Toeplitz matrix (sparse).
  ##   P = TOEPPEN(N, A, B, C, D, E) is the N-by-N pentadiagonal
  ##   Toeplitz matrix with diagonals composed of the numbers
  ##   A =: P(3,1), B =: P(2,1), C =: P(1,1), D =: P(1,2), E =: P(1,3).
  ##   Default: (A,B,C,D,E) = (1,-10,0,10,1) (a matrix of Rutishauser).
  ##             This matrix has eigenvalues lying approximately on
  ##             the line segment 2*cos(2*t) + 20*i*sin(t).
  ##
  ##   Interesting plots are
  ##   PS(FULL(TOEPPEN(32,0,1,0,0,1/4)))  - `triangle'
  ##   PS(FULL(TOEPPEN(32,0,1/2,0,0,1)))  - `propeller'
  ##   PS(FULL(TOEPPEN(32,0,1/2,1,1,1)))  - `fish'
  ##
  ##   References:
  ##   R.M. Beam and R.F. Warming, The asymptotic spectra of
  ##      banded Toeplitz and quasi-Toeplitz matrices, SIAM J. Sci.
  ##      Comput. 14 (4), 1993, pp. 971-1006.
  ##   H. Rutishauser, On test matrices, Programmation en Mathematiques
  ##      Numeriques, Editions Centre Nat. Recherche Sci., Paris, 165,
  ##      1966, pp. 349-365.

  if (nargin < 1 || nargin > 6)
    error ("gallery: 1 to 6 arguments are required for toeppen matrix.");
  elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
    error ("gallery: N must be a numeric integer for toeppen matrix.");
  elseif (any (! cellfun ("isnumeric", {a b c d e})) || any (cellfun ("numel", {a b c d e}) != 1))
    error ("gallery: A, B, C, D and E must be numeric scalars for toeppen matrix.");
  endif

  P = spdiags ([a*ones(n,1) b*ones(n,1) c*ones(n,1) d*ones(n,1) e*ones(n,1)],
                -2:2, n, n);
endfunction

function T = tridiag (n, x = -1, y = 2, z = -1)
  ## TRIDIAG  Tridiagonal matrix (sparse).
  ##   TRIDIAG(X, Y, Z) is the tridiagonal matrix with subdiagonal X,
  ##   diagonal Y, and superdiagonal Z.
  ##   X and Z must be vectors of dimension one less than Y.
  ##   Alternatively TRIDIAG(N, C, D, E), where C, D, and E are all
  ##   scalars, yields the Toeplitz tridiagonal matrix of order N
  ##   with subdiagonal elements C, diagonal elements D, and superdiagonal
  ##   elements E.   This matrix has eigenvalues (Todd 1977)
  ##            D + 2*SQRT(C*E)*COS(k*PI/(N+1)), k=1:N.
  ##   TRIDIAG(N) is the same as TRIDIAG(N,-1,2,-1), which is
  ##   a symmetric positive definite M-matrix (the negative of the
  ##   second difference matrix).
  ##
  ##   References:
  ##   J. Todd, Basic Numerical Mathematics, Vol. 2: Numerical Algebra,
  ##     Birkhauser, Basel, and Academic Press, New York, 1977, p. 155.
  ##   D.E. Rutherford, Some continuant determinants arising in physics and
  ##     chemistry---II, Proc. Royal Soc. Edin., 63, A (1952), pp. 232-241.

  if (nargin != 1 && nargin != 3 && nargin != 4)
    error ("gallery: 1, 3, or 4 arguments are required for tridiag matrix.");
  elseif (nargin == 3)
    z = y;
    y = x;
    x = n;
  endif

  ## Force column vectors
  x = x(:);
  y = y(:);
  z = z(:);

  if (isscalar (x) && isscalar (y) && isscalar (z))
    x *= ones (n-1, 1);
    z *= ones (n-1, 1);
    y *= ones (n,   1);
  elseif (numel (y) != numel (x) + 1)
    error ("gallery: X must have one element less than Y for tridiag matrix.");
  elseif (numel (y) != numel (z) + 1)
    error ("gallery: Z must have one element less than Y for tridiag matrix.");
  endif

  ##  T = diag (x, -1) + diag (y) + diag (z, 1);  # For non-sparse matrix.
  n = numel (y);
  T = spdiags ([[x;0] y [0;z]], -1:1, n, n);
endfunction

function t = triw (n, alpha = -1, k = n(end) - 1)
  ## TRIW   Upper triangular matrix discussed by Wilkinson and others.
  ##   TRIW(N, ALPHA, K) is the upper triangular matrix with ones on
  ##   the diagonal and ALPHAs on the first K >= 0 superdiagonals.
  ##   N may be a 2-vector, in which case the matrix is N(1)-by-N(2) and
  ##   upper trapezoidal.
  ##   Defaults: ALPHA = -1,
  ##             K = N - 1     (full upper triangle).
  ##   TRIW(N) is a matrix discussed by Kahan, Golub and Wilkinson.
  ##
  ##   Ostrowski (1954) shows that
  ##     COND(TRIW(N,2)) = COT(PI/(4*N))^2,
  ##   and for large ABS(ALPHA),
  ##     COND(TRIW(N,ALPHA)) is approximately ABS(ALPHA)^N*SIN(PI/(4*N-2)).
  ##
  ##   Adding -2^(2-N) to the (N,1) element makes TRIW(N) singular,
  ##   as does adding -2^(1-N) to all elements in the first column.
  ##
  ##   References:
  ##   G.H. Golub and J.H. Wilkinson, Ill-conditioned eigensystems and the
  ##      computation of the Jordan canonical form, SIAM Review,
  ##      18(4), 1976, pp. 578-619.
  ##   W. Kahan, Numerical linear algebra, Canadian Math. Bulletin,
  ##      9 (1966), pp. 757-801.
  ##   A.M. Ostrowski, On the spectrum of a one-parametric family of
  ##      matrices, J. Reine Angew. Math., 193 (3/4), 1954, pp. 143-160.
  ##   J.H. Wilkinson, Singular-value decomposition---basic aspects,
  ##      in D.A.H. Jacobs, ed., Numerical Software---Needs and Availability,
  ##      Academic Press, London, 1978, pp. 109-135.

  if (nargin < 1 || nargin > 3)
    error ("gallery: 1 to 3 arguments are required for triw matrix.");
  elseif (! isnumeric (n) || all (numel (n) != [1 2]))
    error ("gallery: N must be a 1 or 2 elements vector for triw matrix.");
  elseif (! isscalar (alpha))
    error ("gallery: ALPHA must be a scalar for triw matrix.");
  elseif (! isscalar (k) || ! isnumeric (k) || fix (k) != k || k < 0)
    error ("gallery: K must be a numeric integer >= 0 for triw matrix.");
  endif

  m = n(1);              # Parameter n specifies dimension: m-by-n.
  n = n(end);

  t = tril (eye (m, n) + alpha * triu (ones (m, n), 1), k);
endfunction

function A = uniformdata (varargin)

  if (nargin < 2)
    error ("gallery: At least 2 arguments required for uniformdata matrix.");
  endif
  if (isnumeric (varargin{end}))
    jidx = varargin{end};
    svec = [varargin{:}];
    varargin(end) = [];
  elseif (ischar (varargin{end}))
    if (nargin < 3)
      error (["gallery: CLASS argument requires 3 inputs " ...
              "for uniformdata matrix."]);
    endif
    jidx = varargin{end-1};
    svec = [varargin{1:end-1}];
    varargin(end-1) = [];
  else
    error (["gallery: J must be an integer in the range [0, 2^32-1] " ...
            "for uniformdata matrix"]);
  endif

  if (! (isnumeric (jidx) && isscalar (jidx)
         && jidx == fix (jidx)
         && jidx >= 0 && jidx <= 0xFFFFFFFF))
    error (["gallery: J must be an integer in the range [0, 2^32-1] " ...
            "for uniformdata matrix"]);
  endif

  ## Save and restore random state.  Initialization done so that reproducible
  ## data is available from gallery depending on the jidx and size vector.
  randstate = rand ("state");
  unwind_protect
    rand ("state", svec);
    A = rand (varargin{:});
  unwind_protect_cleanup
    rand ("state", randstate);
  end_unwind_protect

endfunction

function A = wathen (nx, ny, k = 0)
  ## WATHEN returns the Wathen matrix.
  ##
  ## Discussion:
  ##
  ##   The Wathen matrix is a finite element matrix which is sparse.
  ##
  ##   The entries of the matrix depend in part on a physical quantity
  ##   related to density.  That density is here assigned random values between
  ##   0 and 100.
  ##
  ##   A = WATHEN ( NX, NY ) is a sparse random N-by-N finite element matrix
  ##   where N = 3*NX*NY + 2*NX + 2*NY + 1.
  ##
  ##   A is the consistent mass matrix for a regular NX-by-NY
  ##   grid of 8-node (serendipity) elements in 2 space dimensions.
  ##
  ##   Here is an illustration for NX = 3, NX = 2:
  ##
  ##    23-24-25-26-27-28-29
  ##     |     |     |     |
  ##    19    20    21    22
  ##     |     |     |     |
  ##    12-13-14-15-16-17-18
  ##     |     |     |     |
  ##     8     9    10    11
  ##     |     |     |     |
  ##     1--2--3--4--5--6--7
  ##
  ##   For this example, the total number of nodes is, as expected,
  ##
  ##     N = 3 * 3 * 2 + 2 * 2 + 2 * 3 + 1 = 29.
  ##
  ##   A is symmetric positive definite for any (positive) values of
  ##   the density, RHO(NX,NY), which is chosen randomly in this routine.
  ##
  ##   In particular, if D = DIAG(DIAG(A)), then
  ##     0.25 <= EIG(INV(D)*A) <= 4.5
  ##   for any positive integers NX and NY and any densities RHO(NX,NY).
  ##
  ##   A = WATHEN ( NX, NY, 1 ) returns the diagonally scaled matrix.
  ##
  ## Modified:
  ##
  ##   17 September 2007
  ##
  ## Author:
  ##
  ##   Nicholas Higham
  ##
  ## Reference:
  ##
  ##   Nicholas Higham,
  ##   Algorithm 694: A Collection of Test Matrices in MATLAB,
  ##   ACM Transactions on Mathematical Software,
  ##   Volume 17, Number 3, September 1991, pages 289-305.
  ##
  ##   Andrew Wathen,
  ##   Realistic eigenvalue bounds for the Galerkin mass matrix,
  ##   IMA Journal of Numerical Analysis,
  ##   Volume 7, 1987, pages 449-457.
  ##
  ## Parameters:
  ##
  ##   Input, integer NX, NY, the number of elements in the X and Y directions
  ##   of the finite element grid.  NX and NY must each be at least 1.
  ##
  ##   Optional input, integer K, is used to request that the diagonally scaled
  ##   version of the matrix be returned.  This happens if K is specified with
  ##   the value 1.
  ##
  ##   Output, sparse real A(N,N), the matrix.  The dimension N is determined by
  ##   NX and NY, as described above.  A is stored in the MATLAB sparse matrix
  ##   format.

  if (nargin < 2 || nargin > 3)
    error ("gallery: 2 or 3 arguments are required for wathen matrix.");
  elseif (! isnumeric (nx) || ! isscalar (nx) || nx < 1)
    error ("gallery: NX must be a positive scalar for wathen matrix.");
  elseif (! isnumeric (ny) || ! isscalar (ny) || ny < 1)
    error ("gallery: NY must be a positive scalar for wathen matrix.");
  elseif (! isscalar (k))
    error ("gallery: K must be a scalar for wathen matrix.");
  endif

  e1 = [ 6  -6   2  -8
        -6  32  -6  20
         2  -6   6  -6
        -8  20  -6  32 ];

  e2 = [ 3  -8   2  -6
        -8  16  -8  20
         2  -8   3  -8
        -6  20  -8  16 ];

  e = [ e1  e2
        e2' e1] / 45;

  n = 3*nx*ny + 2*nx + 2*ny + 1;

  A = sparse (n, n);

  rho = 100 * rand (nx, ny);

  for j = 1:ny
    for i = 1:nx
      ##
      ##   For the element (I,J), determine the indices of the 8 nodes.
      ##
      nn(1) = 3*j*nx + 2*i + 2*j + 1;
      nn(2) = nn(1) - 1;
      nn(3) = nn(2) - 1;
      nn(4) = (3*j - 1) * nx + 2*j + i - 1;
      nn(5) = 3 * (j-1) * nx + 2*i + 2*j - 3;
      nn(6) = nn(5) + 1;
      nn(7) = nn(6) + 1;
      nn(8) = nn(4) + 1;

      em = e * rho(i,j);

      for krow = 1:8
        for kcol = 1:8
          A(nn(krow),nn(kcol)) = A(nn(krow),nn(kcol)) + em(krow,kcol);
        endfor
      endfor

    endfor
  endfor

  ## If requested, return A with diagonal scaling.
  if (k)
    A = diag (diag (A)) \ A;
  endif
endfunction

function [A, b] = wilk (n)
  ## WILK   Various specific matrices devised/discussed by Wilkinson.
  ##   [A, b] = WILK(N) is the matrix or system of order N.
  ##   N = 3: upper triangular system Ux=b illustrating inaccurate solution.
  ##   N = 4: lower triangular system Lx=b, ill-conditioned.
  ##   N = 5: HILB(6)(1:5,2:6)*1.8144.  Symmetric positive definite.
  ##   N = 21: W21+, tridiagonal.   Eigenvalue problem.
  ##
  ##   References:
  ##   J.H. Wilkinson, Error analysis of direct methods of matrix inversion,
  ##      J. Assoc. Comput. Mach., 8 (1961),  pp. 281-330.
  ##   J.H. Wilkinson, Rounding Errors in Algebraic Processes, Notes on Applied
  ##      Science No. 32, Her Majesty's Stationery Office, London, 1963.
  ##   J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University
  ##      Press, 1965.

  if (nargin != 1)
    error ("gallery: 1 argument is required for wilk matrix.");
  elseif (! isnumeric (n) || ! isscalar (n))
    error ("gallery: N must be a numeric scalar for wilk matrix.");
  endif

  if (n == 3)
    ## Wilkinson (1961) p.323.
    A = [ 1e-10   0.9  -0.4
          0       0.9  -0.4
          0       0     1e-10 ];

    b = [ 0
          0
          1];

  elseif (n == 4)
    ## Wilkinson (1963) p.105.
    A = [0.9143e-4  0          0          0
         0.8762     0.7156e-4  0          0
         0.7943     0.8143     0.9504e-4  0
         0.8017     0.6123     0.7165     0.7123e-4];

    b = [0.6524
         0.3127
         0.4186
         0.7853];

  elseif (n == 5)
    ## Wilkinson (1965), p.234.
    A = hilb (6);
    A = A(1:5, 2:6) * 1.8144;

  elseif (n == 21)
    ## Wilkinson (1965), p.308.
    E = diag (ones (n-1, 1), 1);
    m = (n-1)/2;
    A = diag (abs (-m:m)) + E + E';

  else
    error ("gallery: unknown N '%d' for wilk matrix.", n);
  endif
endfunction

## NOTE: bandred is part of the Test Matrix Toolbox and is used by randsvd()
function A = bandred (A, kl, ku)
  ## BANDRED  Band reduction by two-sided unitary transformations.
  ##   B = BANDRED(A, KL, KU) is a matrix unitarily equivalent to A
  ##   with lower bandwidth KL and upper bandwidth KU
  ##   (i.e. B(i,j) = 0 if i > j+KL or j > i+KU).
  ##   The reduction is performed using Householder transformations.
  ##   If KU is omitted it defaults to KL.
  ##
  ##   Called by RANDSVD.
  ##   This is a `standard' reduction.  Cf. reduction to bidiagonal form
  ##   prior to computing the SVD.  This code is a little wasteful in that
  ##   it computes certain elements which are immediately set to zero!
  ##
  ##   Reference:
  ##   G.H. Golub and C.F. Van Loan, Matrix Computations, second edition,
  ##   Johns Hopkins University Press, Baltimore, Maryland, 1989.
  ##   Section 5.4.3.

  ##  Check for special case where order of left/right transformations matters.
  ##  Easiest approach is to work on the transpose, flipping back at the end.
  flip = false;
  if (ku == 0)
    flip = true;
    A = A';
    [ku, kl] = deal (kl, ku);
  endif

  [m, n] = size (A);

  for j = 1:min (min (m, n), max (m-kl-1, n-ku-1))
    if (j+kl+1 <= m)
      [v, beta] = house (A(j+kl:m,j));
      temp = A(j+kl:m,j:n);
      A(j+kl:m,j:n) = temp - beta*v*(v'*temp);
      A(j+kl+1:m,j) = zeros (m-j-kl, 1);
    endif

    if (j+ku+1 <= n)
      [v, beta] = house (A(j,j+ku:n)');
      temp = A(j:m,j+ku:n);
      A(j:m,j+ku:n) = temp - beta*(temp*v)*v';
      A(j,j+ku+1:n) = zeros (1, n-j-ku);
    endif
  endfor

  if (flip)
    A = A';
  endif
endfunction

## NOTE: qmult is part of the Test Matrix Toolbox and is used by randsvd()
function B = qmult (A)
  ## QMULT  Pre-multiply by random orthogonal matrix.
  ##   QMULT(A) is Q*A where Q is a random real orthogonal matrix from
  ##   the Haar distribution, of dimension the number of rows in A.
  ##   Special case: if A is a scalar then QMULT(A) is the same as
  ##   QMULT(EYE(A)).
  ##
  ##   Called by RANDSVD.
  ##
  ## Reference:
  ##   G.W. Stewart, The efficient generation of random
  ##   orthogonal matrices with an application to condition estimators,
  ##   SIAM J. Numer. Anal., 17 (1980), 403-409.

  [n, m] = size (A);

  ##  Handle scalar A
  if (isscalar (A))
    n = A;
    A = eye (n);
  endif

  d = zeros (n);

  for k = n-1:-1:1
    ## Generate random Householder transformation.
    x = randn (n-k+1, 1);
    s = norm (x);
    sgn = sign (x(1)) + (x(1) == 0); # Modification for sign(1)=1.
    s = sgn*s;
    d(k) = -sgn;
    x(1) = x(1) + s;
    beta = s*x(1);

    ## Apply the transformation to A.
    y = x'*A(k:n,:);
    A(k:n,:) = A(k:n,:) - x*(y/beta);
  endfor

  ## Tidy up signs
  for i = 1:n-1
    A(i,:) = d(i)*A(i,:);
  endfor
  A(n,:) = A(n,:) * sign (randn);
  B = A;
endfunction

## BIST testing for just a few functions to verify that the main gallery
## dispatch function works.
%assert (gallery ("clement", 3), [0 1 0; 2 0 2; 0 1 0])
%assert (gallery ("invhess", 2), [1 -1; 1 2])

## Test input validation of main dispatch function only
%!error gallery ()
%!error <NAME must be a string> gallery (123)
%!error <matrix binomial not implemented> gallery ("binomial")
%!error <unknown matrix with NAME foobar> gallery ("foobar")

%!assert (gallery ("minij", 4), [1 1 1 1; 1 2 2 2; 1 2 3 3; 1 2 3 4])
%!assert (gallery ("minij", 1), 1)
%!assert (gallery ("minij", 0), [])
%!assert (gallery ("minij", -1), [])