view libinterp/corefcn/dot.cc @ 18518:0bdecd41b2dd stable

correctly size fread result (bug #41648) * oct-stream.cc (octave_base_stream::read): When reading to EOF, don't add extra column to the result matrix if the number of elements found is an exact multiple of the number of rows requested. Avoid mixed signed/unsigned comparisons. * io.tst: New tests.
author John W. Eaton <jwe@octave.org>
date Sat, 22 Feb 2014 13:06:18 -0500
parents 175b392e91fe
children 6a71e5030df5 60562e5c8bfb
line wrap: on
line source

/*

Copyright (C) 2009-2013 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "f77-fcn.h"
#include "mx-base.h"
#include "error.h"
#include "defun.h"
#include "parse.h"

extern "C"
{
  F77_RET_T
  F77_FUNC (ddot3, DDOT3) (const octave_idx_type&, const octave_idx_type&,
                           const octave_idx_type&, const double*,
                           const double*, double*);

  F77_RET_T
  F77_FUNC (sdot3, SDOT3) (const octave_idx_type&, const octave_idx_type&,
                           const octave_idx_type&, const float*,
                           const float*, float*);

  F77_RET_T
  F77_FUNC (zdotc3, ZDOTC3) (const octave_idx_type&, const octave_idx_type&,
                             const octave_idx_type&, const Complex*,
                             const Complex*, Complex*);

  F77_RET_T
  F77_FUNC (cdotc3, CDOTC3) (const octave_idx_type&, const octave_idx_type&,
                             const octave_idx_type&, const FloatComplex*,
                             const FloatComplex*, FloatComplex*);

  F77_RET_T
  F77_FUNC (dmatm3, DMATM3) (const octave_idx_type&, const octave_idx_type&,
                             const octave_idx_type&, const octave_idx_type&,
                             const double*, const double*, double*);

  F77_RET_T
  F77_FUNC (smatm3, SMATM3) (const octave_idx_type&, const octave_idx_type&,
                             const octave_idx_type&, const octave_idx_type&,
                             const float*, const float*, float*);

  F77_RET_T
  F77_FUNC (zmatm3, ZMATM3) (const octave_idx_type&, const octave_idx_type&,
                             const octave_idx_type&, const octave_idx_type&,
                             const Complex*, const Complex*, Complex*);

  F77_RET_T
  F77_FUNC (cmatm3, CMATM3) (const octave_idx_type&, const octave_idx_type&,
                             const octave_idx_type&, const octave_idx_type&,
                             const FloatComplex*, const FloatComplex*,
                             FloatComplex*);
}

static void
get_red_dims (const dim_vector& x, const dim_vector& y, int dim,
              dim_vector& z, octave_idx_type& m, octave_idx_type& n,
              octave_idx_type& k)
{
  int nd = x.length ();
  assert (nd == y.length ());
  z = dim_vector::alloc (nd);
  m = 1, n = 1, k = 1;
  for (int i = 0; i < nd; i++)
    {
      if (i < dim)
        {
          z(i) = x(i);
          m *= x(i);
        }
      else if (i > dim)
        {
          z(i) = x(i);
          n *= x(i);
        }
      else
        {
          k = x(i);
          z(i) = 1;
        }
    }
}

DEFUN (dot, args, ,
       "-*- texinfo -*-\n\
@deftypefn {Built-in Function} {} dot (@var{x}, @var{y}, @var{dim})\n\
Compute the dot product of two vectors.  If @var{x} and @var{y}\n\
are matrices, calculate the dot products along the first\n\
non-singleton dimension.  If the optional argument @var{dim} is\n\
given, calculate the dot products along this dimension.\n\
\n\
This is equivalent to\n\
@code{sum (conj (@var{X}) .* @var{Y}, @var{dim})},\n\
but avoids forming a temporary array and is faster.  When @var{X} and\n\
@var{Y} are column vectors, the result is equivalent to\n\
@code{@var{X}' * @var{Y}}.\n\
@seealso{cross, divergence}\n\
@end deftypefn")
{
  octave_value retval;
  int nargin = args.length ();

  if (nargin < 2 || nargin > 3)
    {
      print_usage ();
      return retval;
    }

  octave_value argx = args(0), argy = args(1);

  if (argx.is_numeric_type () && argy.is_numeric_type ())
    {
      dim_vector dimx = argx.dims (), dimy = argy.dims ();
      bool match = dimx == dimy;
      if (! match && nargin == 2
          && dimx.is_vector () && dimy.is_vector ())
        {
          // Change to column vectors.
          dimx = dimx.redim (1);
          argx = argx.reshape (dimx);
          dimy = dimy.redim (1);
          argy = argy.reshape (dimy);
          match = ! error_state;
        }

      if (match)
        {
          int dim;
          if (nargin == 2)
            dim = dimx.first_non_singleton ();
          else
            dim = args(2).int_value (true) - 1;

          if (error_state)
            ;
          else if (dim < 0)
            error ("dot: DIM must be a valid dimension");
          else
            {
              octave_idx_type m, n, k;
              dim_vector dimz;
              if (argx.is_complex_type () || argy.is_complex_type ())
                {
                  if (argx.is_single_type () || argy.is_single_type ())
                    {
                      FloatComplexNDArray x = argx.float_complex_array_value ();
                      FloatComplexNDArray y = argy.float_complex_array_value ();
                      get_red_dims (dimx, dimy, dim, dimz, m, n, k);
                      FloatComplexNDArray z(dimz);
                      if (! error_state)
                        F77_XFCN (cdotc3, CDOTC3, (m, n, k,
                                                   x.data (), y.data (),
                                                   z.fortran_vec ()));
                      retval = z;
                    }
                  else
                    {
                      ComplexNDArray x = argx.complex_array_value ();
                      ComplexNDArray y = argy.complex_array_value ();
                      get_red_dims (dimx, dimy, dim, dimz, m, n, k);
                      ComplexNDArray z(dimz);
                      if (! error_state)
                        F77_XFCN (zdotc3, ZDOTC3, (m, n, k,
                                                   x.data (), y.data (),
                                                   z.fortran_vec ()));
                      retval = z;
                    }
                }
              else if (argx.is_float_type () && argy.is_float_type ())
                {
                  if (argx.is_single_type () || argy.is_single_type ())
                    {
                      FloatNDArray x = argx.float_array_value ();
                      FloatNDArray y = argy.float_array_value ();
                      get_red_dims (dimx, dimy, dim, dimz, m, n, k);
                      FloatNDArray z(dimz);
                      if (! error_state)
                        F77_XFCN (sdot3, SDOT3, (m, n, k, x.data (), y.data (),
                                                 z.fortran_vec ()));
                      retval = z;
                    }
                  else
                    {
                      NDArray x = argx.array_value ();
                      NDArray y = argy.array_value ();
                      get_red_dims (dimx, dimy, dim, dimz, m, n, k);
                      NDArray z(dimz);
                      if (! error_state)
                        F77_XFCN (ddot3, DDOT3, (m, n, k, x.data (), y.data (),
                                                 z.fortran_vec ()));
                      retval = z;
                    }
                }
              else
                {
                  // Non-optimized evaluation.
                  octave_value_list tmp;
                  tmp(1) = dim + 1;
                  tmp(0) = do_binary_op (octave_value::op_el_mul, argx, argy);
                  if (! error_state)
                    {
                      tmp = feval ("sum", tmp, 1);
                      if (! tmp.empty ())
                        retval = tmp(0);
                    }
                }
            }
        }
      else
        error ("dot: sizes of X and Y must match");

    }
  else
    error ("dot: X and Y must be numeric");

  return retval;
}

/*
%!assert (dot ([1, 2], [2, 3]), 8)

%!test
%! x = [2, 1; 2, 1];
%! y = [-0.5, 2; 0.5, -2];
%! assert (dot (x, y), [0 0]);

%!test
%! x = [1+i, 3-i; 1-i, 3-i];
%! assert (dot (x, x), [4, 20]);

%!test
%! x = int8 ([1 2]);
%! y = int8 ([2 3]);
%! assert (dot (x, y), 8);

%!test
%! x = int8 ([1 2; 3 4]);
%! y = int8 ([5 6; 7 8]);
%! assert (dot (x, y), [26 44]);
%! assert (dot (x, y, 2), [17; 53]);
%! assert (dot (x, y, 3), [5 12; 21 32]);

*/

DEFUN (blkmm, args, ,
       "-*- texinfo -*-\n\
@deftypefn {Built-in Function} {} blkmm (@var{A}, @var{B})\n\
Compute products of matrix blocks.  The blocks are given as\n\
2-dimensional subarrays of the arrays @var{A}, @var{B}.\n\
The size of @var{A} must have the form @code{[m,k,@dots{}]} and\n\
size of @var{B} must be @code{[k,n,@dots{}]}.  The result is\n\
then of size @code{[m,n,@dots{}]} and is computed as follows:\n\
\n\
@example\n\
@group\n\
for i = 1:prod (size (@var{A})(3:end))\n\
  @var{C}(:,:,i) = @var{A}(:,:,i) * @var{B}(:,:,i)\n\
endfor\n\
@end group\n\
@end example\n\
@end deftypefn")
{
  octave_value retval;
  int nargin = args.length ();

  if (nargin != 2)
    {
      print_usage ();
      return retval;
    }

  octave_value argx = args(0), argy = args(1);

  if (argx.is_numeric_type () && argy.is_numeric_type ())
    {
      const dim_vector dimx = argx.dims (), dimy = argy.dims ();
      int nd = dimx.length ();
      octave_idx_type m = dimx(0), k = dimx(1), n = dimy(1), np = 1;
      bool match = dimy(0) == k && nd == dimy.length ();
      dim_vector dimz = dim_vector::alloc (nd);
      dimz(0) = m;
      dimz(1) = n;
      for (int i = 2; match && i < nd; i++)
        {
          match = match && dimx(i) == dimy(i);
          dimz(i) = dimx(i);
          np *= dimz(i);
        }

      if (match)
        {
          if (argx.is_complex_type () || argy.is_complex_type ())
            {
              if (argx.is_single_type () || argy.is_single_type ())
                {
                  FloatComplexNDArray x = argx.float_complex_array_value ();
                  FloatComplexNDArray y = argy.float_complex_array_value ();
                  FloatComplexNDArray z(dimz);
                  if (! error_state)
                    F77_XFCN (cmatm3, CMATM3, (m, n, k, np,
                                               x.data (), y.data (),
                                               z.fortran_vec ()));
                  retval = z;
                }
              else
                {
                  ComplexNDArray x = argx.complex_array_value ();
                  ComplexNDArray y = argy.complex_array_value ();
                  ComplexNDArray z(dimz);
                  if (! error_state)
                    F77_XFCN (zmatm3, ZMATM3, (m, n, k, np,
                                               x.data (), y.data (),
                                               z.fortran_vec ()));
                  retval = z;
                }
            }
          else
            {
              if (argx.is_single_type () || argy.is_single_type ())
                {
                  FloatNDArray x = argx.float_array_value ();
                  FloatNDArray y = argy.float_array_value ();
                  FloatNDArray z(dimz);
                  if (! error_state)
                    F77_XFCN (smatm3, SMATM3, (m, n, k, np,
                                               x.data (), y.data (),
                                               z.fortran_vec ()));
                  retval = z;
                }
              else
                {
                  NDArray x = argx.array_value ();
                  NDArray y = argy.array_value ();
                  NDArray z(dimz);
                  if (! error_state)
                    F77_XFCN (dmatm3, DMATM3, (m, n, k, np,
                                               x.data (), y.data (),
                                               z.fortran_vec ()));
                  retval = z;
                }
            }
        }
      else
        error ("blkmm: A and B dimensions don't match: (%s) and (%s)",
               dimx.str ().c_str (), dimy.str ().c_str ());

    }
  else
    error ("blkmm: A and B must be numeric");

  return retval;
}

/*
%!test
%! x(:,:,1) = [1 2; 3 4];
%! x(:,:,2) = [1 1; 1 1];
%! z(:,:,1) = [7 10; 15 22];
%! z(:,:,2) = [2 2; 2 2];
%! assert (blkmm (x,x), z);
*/