view libinterp/corefcn/gammainc.cc @ 18518:0bdecd41b2dd stable

correctly size fread result (bug #41648) * oct-stream.cc (octave_base_stream::read): When reading to EOF, don't add extra column to the result matrix if the number of elements found is an exact multiple of the number of rows requested. Avoid mixed signed/unsigned comparisons. * io.tst: New tests.
author John W. Eaton <jwe@octave.org>
date Sat, 22 Feb 2014 13:06:18 -0500
parents 870f3e12e163
children 0850b5212619
line wrap: on
line source

/*

Copyright (C) 1997-2013 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "lo-specfun.h"

#include "defun.h"
#include "error.h"
#include "gripes.h"
#include "oct-obj.h"
#include "utils.h"

DEFUN (gammainc, args, ,
       "-*- texinfo -*-\n\
@deftypefn  {Mapping Function} {} gammainc (@var{x}, @var{a})\n\
@deftypefnx {Mapping Function} {} gammainc (@var{x}, @var{a}, \"lower\")\n\
@deftypefnx {Mapping Function} {} gammainc (@var{x}, @var{a}, \"upper\")\n\
Compute the normalized incomplete gamma function,\n\
@tex\n\
$$\n\
 \\gamma (x, a) = {1 \\over {\\Gamma (a)}}\\displaystyle{\\int_0^x t^{a-1} e^{-t} dt}\n\
$$\n\
@end tex\n\
@ifnottex\n\
\n\
@example\n\
@group\n\
                                x\n\
                       1       /\n\
gammainc (x, a) = ---------    | exp (-t) t^(a-1) dt\n\
                  gamma (a)    /\n\
                            t=0\n\
@end group\n\
@end example\n\
\n\
@end ifnottex\n\
with the limiting value of 1 as @var{x} approaches infinity.\n\
The standard notation is @math{P(a,x)}, e.g., Abramowitz and Stegun (6.5.1).\n\
\n\
If @var{a} is scalar, then @code{gammainc (@var{x}, @var{a})} is returned\n\
for each element of @var{x} and vice versa.\n\
\n\
If neither @var{x} nor @var{a} is scalar, the sizes of @var{x} and\n\
@var{a} must agree, and @code{gammainc} is applied element-by-element.\n\
\n\
By default the incomplete gamma function integrated from 0 to @var{x} is\n\
computed.  If @qcode{\"upper\"} is given then the complementary function\n\
integrated from @var{x} to infinity is calculated.  It should be noted that\n\
\n\
@example\n\
gammainc (@var{x}, @var{a}) @equiv{} 1 - gammainc (@var{x}, @var{a}, \"upper\")\n\
@end example\n\
@seealso{gamma, lgamma}\n\
@end deftypefn")
{
  octave_value retval;
  bool lower = true;

  int nargin = args.length ();

  if (nargin == 3)
    {
      if (args(2).is_string ())
        {
          std::string s = args(2).string_value ();
          std::transform (s.begin (), s.end (), s.begin (), tolower);
          if (s == "upper")
            lower = false;
          else if (s != "lower")
            error ("gammainc: third argument must be \"lower\" or \"upper\"");
        }
      else
        error ("gammainc: third argument must be \"lower\" or \"upper\"");

    }

  if (!error_state && nargin >= 2  && nargin <= 3)
    {
      octave_value x_arg = args(0);
      octave_value a_arg = args(1);

      // FIXME: Can we make a template version of the duplicated code below
      if (x_arg.is_single_type () || a_arg.is_single_type ())
        {
          if (x_arg.is_scalar_type ())
            {
              float x = x_arg.float_value ();

              if (! error_state)
                {
                  if (a_arg.is_scalar_type ())
                    {
                      float a = a_arg.float_value ();

                      if (! error_state)
                        retval = lower ? gammainc (x, a)
                                       : static_cast<float>(1)
                                         - gammainc (x, a);
                    }
                  else
                    {
                      FloatNDArray a = a_arg.float_array_value ();

                      if (! error_state)
                        retval = lower ? gammainc (x, a)
                                       : static_cast<float>(1)
                                         - gammainc (x, a);
                    }
                }
            }
          else
            {
              FloatNDArray x = x_arg.float_array_value ();

              if (! error_state)
                {
                  if (a_arg.is_scalar_type ())
                    {
                      float a = a_arg.float_value ();

                      if (! error_state)
                        retval = lower ? gammainc (x, a)
                                       : static_cast<float>(1)
                                         - gammainc (x, a);
                    }
                  else
                    {
                      FloatNDArray a = a_arg.float_array_value ();

                      if (! error_state)
                        retval = lower ? gammainc (x, a)
                                       : static_cast<float>(1)
                                         - gammainc (x, a);
                    }
                }
            }
        }
      else
        {
          if (x_arg.is_scalar_type ())
            {
              double x = x_arg.double_value ();

              if (! error_state)
                {
                  if (a_arg.is_scalar_type ())
                    {
                      double a = a_arg.double_value ();

                      if (! error_state)
                        retval = lower ? gammainc (x, a) : 1. - gammainc (x, a);
                    }
                  else
                    {
                      NDArray a = a_arg.array_value ();

                      if (! error_state)
                        retval = lower ? gammainc (x, a) : 1. - gammainc (x, a);
                    }
                }
            }
          else
            {
              NDArray x = x_arg.array_value ();

              if (! error_state)
                {
                  if (a_arg.is_scalar_type ())
                    {
                      double a = a_arg.double_value ();

                      if (! error_state)
                        retval = lower ? gammainc (x, a) : 1. - gammainc (x, a);
                    }
                  else
                    {
                      NDArray a = a_arg.array_value ();

                      if (! error_state)
                        retval = lower ? gammainc (x, a) : 1. - gammainc (x, a);
                    }
                }
            }
        }
    }
  else
    print_usage ();

  return retval;
}

/*
%!test
%! a = [.5 .5 .5 .5 .5];
%! x = [0 1 2 3 4];
%! v1 = sqrt (pi)*erf (x)./gamma (a);
%! v3 = gammainc (x.*x, a);
%! assert (v1, v3, sqrt (eps));

%!assert (gammainc (0:4,0.5, "upper"), 1-gammainc (0:4,0.5), 1e-10)

%!test
%! a = single ([.5 .5 .5 .5 .5]);
%! x = single ([0 1 2 3 4]);
%! v1 = sqrt (pi ("single"))*erf (x)./gamma (a);
%! v3 = gammainc (x.*x, a);
%! assert (v1, v3, sqrt (eps ("single")));

%!assert (gammainc (single (0:4), single (0.5), "upper"),
%!        single (1)-gammainc (single (0:4), single (0.5)),
%!        single (1e-7))
*/