view doc/interpreter/java.txi @ 19630:0e1f5a750d00

maint: Periodic merge of gui-release to default.
author John W. Eaton <jwe@octave.org>
date Tue, 20 Jan 2015 10:24:46 -0500
parents d1c649bd90e9 446c46af4b42
children 4197fc428c7d
line wrap: on
line source

@c Copyright (C) 2010-2013 Martin Hepperle
@c
@c This file is part of Octave.
@c
@c Octave is free software; you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by the
@c Free Software Foundation; either version 3 of the License, or (at
@c your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but WITHOUT
@c ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
@c FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
@c for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING.  If not, see
@c <http://www.gnu.org/licenses/>.

@node Java Interface
@chapter Java Interface

@cindex using Octave with Java
@cindex Java, using with Octave
@cindex calling Java from Octave
@cindex Java, calling from Octave
@cindex calling Octave from Java
@cindex Octave, calling from Java

The Java Interface is designed for calling Java functions from within Octave.
If you want to do the reverse, and call Octave from within Java, try
a library like
@code{javaOctave} (@url{http://kenai.com/projects/javaOctave}) or
@code{joPas} (@url{http://jopas.sourceforge.net}).

@menu
* Java Interface Functions::
* Dialog Box Functions::
* FAQ - Frequently asked Questions::
@end menu

@node Java Interface Functions
@section Java Interface Functions

The following functions are the core of the Java Interface.  They provide
a way to create a Java object, get and set its data fields, and call Java
methods which return results to Octave.

@cindex object, creating a Java object
@DOCSTRING(javaObject)

@cindex array, creating a Java array
@DOCSTRING(javaArray)

There are many different variable types in Octave but only ones created through
@code{javaObject} can use Java functions.  Before using Java with an unknown
object the type can be checked with @code{isjava}.

@DOCSTRING(isjava)

Once an object has been created it is natural to find out what fields the
object has and to read (get) and write (set) them.

@cindex fields, displaying available fields of a Java object
In Octave the @code{fieldnames} function for structures has been overloaded
to return the fields of a Java object.  For example:

@example
@group
dobj = javaObject ("java.lang.Double", pi);
fieldnames (dobj)
@result{}
@{
  [1,1] = public static final double java.lang.Double.POSITIVE_INFINITY
  [1,2] = public static final double java.lang.Double.NEGATIVE_INFINITY
  [1,3] = public static final double java.lang.Double.NaN
  [1,4] = public static final double java.lang.Double.MAX_VALUE
  [1,5] = public static final double java.lang.Double.MIN_NORMAL
  [1,6] = public static final double java.lang.Double.MIN_VALUE
  [1,7] = public static final int java.lang.Double.MAX_EXPONENT
  [1,8] = public static final int java.lang.Double.MIN_EXPONENT
  [1,9] = public static final int java.lang.Double.SIZE
  [1,10] = public static final java.lang.Class java.lang.Double.TYPE
@}
@end group
@end example

@cindex field, returning value of Java object field
The analogy of objects with structures is carried over into reading and
writing object fields.  To read a field the object is indexed with the
@samp{.} operator from structures.  This is the preferred method for reading
fields, but Octave also provides a function interface to read fields with
@code{java_get}.  An example of both styles is shown below.

@example
@group
dobj = javaObject ("java.lang.Double", pi);
dobj.MAX_VALUE
@result{}  1.7977e+308
java_get ("java.lang.Float", "MAX_VALUE")
@result{}  3.4028e+38
@end group
@end example

@DOCSTRING(java_get)

@cindex field, setting value of Java object field
@DOCSTRING(java_set)

@cindex methods, displaying available methods of a Java object
To see what functions can be called with an object use @code{methods}.
For example, using the previously created @var{dobj}:

@example
@group
methods (dobj)
@result{}
Methods for class java.lang.Double:
boolean equals(java.lang.Object)
java.lang.String toString(double)
java.lang.String toString()
@dots{}
@end group
@end example

To call a method of an object the same structure indexing operator @samp{.}
is used.  Octave also provides a functional interface to calling the methods
of an object through @code{javaMethod}.  An example showing both styles is
shown below.

@example
@group
dobj = javaObject ("java.lang.Double", pi);
dobj.equals (3)
@result{}  0
javaMethod ("equals", dobj, pi)
@result{}  1
@end group
@end example

@cindex method, invoking a method of a Java object
@DOCSTRING(javaMethod)

The following three functions are used to display and modify the
class path used by the Java Virtual Machine.  This is entirely separate
from Octave's PATH variable and is used by the JVM to find the correct
code to execute.

@cindex classpath, displaying
@cindex classpath, dynamic
@cindex dynamic classpath
@cindex classpath, static
@cindex static classpath
@DOCSTRING(javaclasspath)

@findex javaaddpath
@cindex classpath, adding new path
@cindex path, adding to classpath
@cindex classpath, dynamic
@cindex dynamic classpath, adding new path
@DOCSTRING(javaaddpath)

@cindex classpath, removing path
@cindex path, removing from classpath
@DOCSTRING(javarmpath)

The following functions provide information and control over the interface
between Octave and the Java Virtual Machine.

@DOCSTRING(javachk)

@DOCSTRING(usejava)

@cindex memory, displaying Java memory status
@DOCSTRING(javamem)

@DOCSTRING(java_matrix_autoconversion)

@DOCSTRING(java_unsigned_autoconversion)

@DOCSTRING(debug_java)

@node Dialog Box Functions
@section Dialog Box Functions

The following functions all use the Java Interface to provide some form
of dialog box.

@cindex dialog, displaying a warning dialog
@DOCSTRING(msgbox)

@cindex dialog, displaying an error dialog
@DOCSTRING(errordlg)

@cindex dialog, displaying a help dialog
@DOCSTRING(helpdlg)

@cindex dialog, displaying an input dialog
@DOCSTRING(inputdlg)

@cindex dialog, displaying a list dialog
@DOCSTRING(listdlg)

@cindex dialog, displaying a question dialog
@DOCSTRING(questdlg)

@cindex dialog, displaying a warning dialog
@DOCSTRING(warndlg)

@c ------------------------------------------------------------------------
@node FAQ - Frequently asked Questions
@section FAQ - Frequently asked Questions

@menu
* How to distinguish between Octave and Matlab?::
* How to make Java classes available?::
* How to create an instance of a Java class?::
* How can I handle memory limitations?::
* Which @TeX{} symbols are implemented in dialog functions?::
@end menu

@c ------------------------------------------------------------------------
@node How to distinguish between Octave and Matlab?
@subsection How to distinguish between Octave and Matlab?
@anchor{XREFFAQ}
@c - index -
@cindex Octave and @sc{matlab}, how to distinguish between
@c - index -

Octave and @sc{matlab} are very similar, but handle Java slightly different.
Therefore it may be necessary to detect the environment and use the appropriate
functions.  The following function can be used to detect the environment.  Due
to the persistent variable it can be called repeatedly without a heavy
performance hit.

Example:

@example
@group
%%
%% Return: true if the environment is Octave.
%%
function retval = isOctave
  persistent cacheval;  % speeds up repeated calls

  if isempty (cacheval)
    cacheval = (exist ("OCTAVE_VERSION", "builtin") > 0);
  end

  retval = cacheval;
end
@end group
@end example

@c ------------------------------------------------------------------------
@node How to make Java classes available?
@subsection How to make Java classes available to Octave?
@c - index -
@cindex classpath, setting
@cindex classpath, difference between static and dynamic
@cindex static classpath
@cindex dynamic classpath
@cindex @file{javaclasspath.txt}
@cindex @file{classpath.txt}
@cindex classes, making available to Octave
@c - index -

Java finds classes by searching a @var{classpath}.  This is a list of Java
archive files and/or directories containing class files.  In Octave
the @var{classpath} is composed of two parts:

@itemize
@item the @var{static classpath} is initialized once at startup of the JVM, and

@item the @var{dynamic classpath} which can be modified at runtime.
@end itemize

Octave searches the @var{static classpath} first, then the @var{dynamic
classpath}.  Classes appearing in the @var{static} as well as in the
@var{dynamic classpath} will therefore be found in the @var{static classpath}
and loaded from this location.  Classes which will be used frequently or must
be available to all users should be added to the @var{static classpath}.  The
@var{static classpath} is populated once from the contents of a plain text file
named @file{javaclasspath.txt} (or @file{classpath.txt} historically) when the
Java Virtual Machine starts.  This file contains one line for each individual
classpath to be added to the @var{static classpath}.  These lines can identify
single class files, directories containing class files, or Java archives with
complete class file hierarchies.  Comment lines starting with a @samp{#} or a
@samp{%} character are ignored.

The search rules for the file @file{javaclasspath.txt}
(or @file{classpath.txt}) are:

@itemize
@item First, Octave tries to locate it in the current directory (where Octave
was started from).  If such a file is found, it is read and defines the initial
@var{static classpath}.  Thus, it is possible to define a static classpath on a
'per Octave invocation' basis.

@item Next, Octave searches in the user's home directory.  If a file
@file{javaclasspath.txt} exists here, its contents are appended to the static
classpath (if any).  Thus, it is possible to build an initial static classpath
on a 'per user' basis.

@item Finally, Octave looks for a next occurrence of file
@file{javaclasspath.txt} in the m-files directory where Octave Java functions
live.  This is where @file{javaclasspath.m} resides, usually something like
@file{@w{@env{OCTAVE_HOME}}/share/octave/@w{@env{OCTAVE_VERSION}}/m/java/}.  You can
find this directory by executing the command

@example
which javaclasspath
@end example

If this file exists here, its contents are also appended to the static
classpath.  Note that the archives and class directories defined in this last
step will affect all users.
@end itemize

Classes which are used only by a specific script should be placed in the
@var{dynamic classpath}.  This portion of the classpath can be modified at
runtime using the @code{javaaddpath} and @code{javarmpath} functions.

Example:

@example
octave> base_path = "C:/Octave/java_files";

octave> % add two JARchives to the dynamic classpath
octave> javaaddpath ([base_path, "/someclasses.jar"]);
octave> javaaddpath ([base_path, "/moreclasses.jar"]);

octave> % check the dynamic classpath
octave> p = javaclasspath;
octave> disp (p@{1@});
C:/Octave/java_files/someclasses.jar
octave> disp (p@{2@});
C:/Octave/java_files/moreclasses.jar

octave> % remove the first element from the classpath
octave> javarmpath ([base_path, "/someclasses.jar"]);
octave> p = javaclasspath;
octave> disp (p@{1@});
C:/Octave/java_files/moreclasses.jar

octave> % provoke an error
octave> disp (p@{2@});
error: A(I): Index exceeds matrix dimension.
@end example

Another way to add files to the @var{dynamic classpath} exclusively for your
user account is to use the file @file{.octaverc} which is stored in your home
directory.  All Octave commands in this file are executed each time you start a
new instance of Octave.  The following example adds the directory @file{octave}
to Octave's search path and the archive @file{myclasses.jar} in this directory
to the Java search path.

@example
@group
% contents of .octaverc:
addpath ("~/octave");
javaaddpath ("~/octave/myclasses.jar");
@end group
@end example

@c ------------------------------------------------------------------------
@node How to create an instance of a Java class?
@subsection How to create an instance of a Java class?
@c - index -
@cindex object, how to create
@cindex instance, how to create
@c - index -

The function @code{javaObject} can be used to create Java objects..

Example:

@example
Passenger = javaObject ("package.FirstClass", row, seat);
@end example

@c ------------------------------------------------------------------------
@node How can I handle memory limitations?
@subsection How can I handle memory limitations?
@cindex memory, limitations

In order to execute Java code Octave creates a Java Virtual Machine (JVM).
Such a JVM allocates a fixed amount of initial memory and may expand this pool
up to a fixed maximum memory limit.  The default values depend on the Java
version (@pxref{XREFjavamem,,javamem}).  The memory pool is shared by all
Java objects running in the JVM@.  This strict memory limit is intended mainly
to avoid that runaway applications inside web browsers or in enterprise servers
can consume all memory and crash the system.  When the maximum memory limit is
hit, Java code will throw exceptions so that applications will fail or behave
unexpectedly.

You can specify options for the creation of the JVM inside a file named
@file{java.opts}.  This is a text file where you can enter lines containing
@option{-X} and @option{-D} options handed to the JVM during initialization.

The directory where the Java options file is located is specified by the
environment variable @w{@env{OCTAVE_JAVA_DIR}}.  If unset the directory where
@file{javaclasspath.m} resides is used instead (typically
@file{@w{@env{OCTAVE_HOME}}/share/octave/@w{@env{OCTAVE_VERSION}}/m/java/}).  You can
find this directory by executing

@example
which javaclasspath
@end example

The @option{-X} options allow you to increase the maximum amount of memory
available to the JVM@.  The following example allows up to 256 Megabytes to
be used by adding the following line to the @file{java.opts} file:

@example
-Xmx256m
@end example

The maximum possible amount of memory depends on your system.  On a Windows
system with 2 Gigabytes main memory you should be able to set this maximum to
about 1 Gigabyte.

If your application requires a large amount of memory from the beginning, you
can also specify the initial amount of memory allocated to the JVM@.  Adding
the following line to the @file{java.opts} file starts the JVM with 64
Megabytes of initial memory:

@example
-Xms64m
@end example

For more details on the available @option{-X} options of your Java Virtual
Machine issue the command @samp{java -X} at the operating system command prompt
and consult the Java documentation.

The @option{-D} options can be used to define system properties which can then
be used by Java classes inside Octave.  System properties can be retrieved by
using the @code{getProperty()} methods of the @code{java.lang.System} class.
The following example line defines the property @var{MyProperty} and assigns it
the string @code{12.34}.

@example
-DMyProperty=12.34
@end example

The value of this property can then be retrieved as a string by a Java object
or in Octave:

@example
@group
octave> javaMethod ("getProperty", "java.lang.System", "MyProperty");
ans = 12.34
@end group
@end example

@seealso{javamem}

@c ------------------------------------------------------------------------
@node Which @TeX{} symbols are implemented in dialog functions?
@subsection Which @TeX{} symbols are implemented in dialog functions?
@c - index -
@cindex symbols, translation table
@cindex @TeX{} symbols, translation table
@cindex translation table for @TeX{} symbols
@c - index -

The dialog functions contain a translation table for @TeX{} like symbol codes.
Thus messages and labels can be tailored to show some common mathematical
symbols or Greek characters.  No further @TeX{} formatting codes are supported.
 The characters are translated to their Unicode equivalent.  However, not all
characters may be displayable on your system.  This depends on the font used by
the Java system on your computer.

Each @TeX{} symbol code must be terminated by a space character to make it
distinguishable from the surrounding text.  Therefore the string @samp{\alpha
=12.0} will produce the desired result, whereas @samp{\alpha=12.0} would
produce the literal text @var{'\alpha=12.0'}.

@seealso{errordlg, helpdlg, inputdlg, listdlg, msgbox, questdlg, warndlg}

@need 5000
@c ---------------------------------
@ifhtml
@float Table
The table below shows each @TeX{} character code and the corresponding Unicode
character:
@multitable @columnfractions 0.18 0.1 0.05 0.18 0.1 0.05 0.18 0.1
@item \alpha
@tab 'α'
@tab
@tab \beta
@tab 'β'
@tab
@tab \gamma
@tab 'γ'
@c ----------
@item \delta
@tab 'δ'
@tab
@tab \epsilon
@tab 'ε'
@tab
@tab \zeta
@tab 'ζ'
@c ----------
@item \eta
@tab 'η'
@tab
@tab \theta
@tab 'θ'
@tab
@tab \vartheta
@tab 'ϑ'
@c ----------
@item \iota
@tab 'ι'
@tab
@tab \kappa
@tab 'κ'
@tab
@tab \lambda
@tab 'λ'
@c ----------
@item \mu
@tab 'μ'
@tab
@tab \nu
@tab 'ν'
@tab
@tab \xi
@tab 'ξ'
@c ----------
@item \pi
@tab 'π'
@tab
@tab \rho
@tab 'ρ'
@tab
@tab \sigma
@tab 'σ'
@c ----------
@item \varsigma
@tab 'ς'
@tab
@tab \tau
@tab 'τ'
@tab
@tab \phi
@tab 'φ'
@c ----------
@item \chi
@tab 'χ'
@tab
@tab \psi
@tab 'ψ'
@tab
@tab \omega
@tab 'ω'
@c ----------
@item \upsilon
@tab 'υ'
@tab
@tab \Gamma
@tab 'Γ'
@tab
@tab \Delta
@tab 'Δ'
@c ----------
@item \Theta
@tab 'Θ'
@tab
@tab \Lambda
@tab 'Λ'
@tab
@tab \Pi
@tab 'Π'
@c ----------
@item \Xi
@tab 'Ξ'
@tab
@tab \Sigma
@tab 'Σ'
@tab
@tab \Upsilon
@tab 'Υ'
@c ----------
@item \Phi
@tab 'Φ'
@tab
@tab \Psi
@tab 'Ψ'
@tab
@tab \Omega
@tab 'Ω'
@c ----------
@item \Im
@tab ''
@tab
@tab \Re
@tab ''
@tab
@tab \leq
@tab ''
@c ----------
@item \geq
@tab ''
@tab
@tab \neq
@tab ''
@tab
@tab \pm
@tab '±'
@c ----------
@item \infty
@tab ''
@tab
@tab \partial
@tab ''
@tab
@tab \approx
@tab ''
@c ----------
@item \circ
@tab ''
@tab
@tab \bullet
@tab ''
@tab
@tab \times
@tab '×'
@c ----------
@item \sim
@tab '~'
@tab
@tab \nabla
@tab ''
@tab
@tab \ldots
@tab ''
@c ----------
@item \exists
@tab ''
@tab
@tab \neg
@tab '¬'
@tab
@tab \aleph
@tab ''
@c ----------
@item \forall
@tab ''
@tab
@tab \cong
@tab ''
@tab
@tab \wp
@tab ''
@c ----------
@item \propto
@tab ''
@tab
@tab \otimes
@tab ''
@tab
@tab \oplus
@tab ''
@c ----------
@item \oslash
@tab ''
@tab
@tab \cap
@tab ''
@tab
@tab \cup
@tab ''
@c ----------
@item \ni
@tab ''
@tab
@tab \in
@tab ''
@tab
@tab \div
@tab '÷'
@c ----------
@item \equiv
@tab ''
@tab
@tab \int
@tab ''
@tab
@tab \perp
@tab ''
@c ----------
@item \wedge
@tab ''
@tab
@tab \vee
@tab ''
@tab
@tab \supseteq
@tab ''
@c ----------
@item \supset
@tab ''
@tab
@tab \subseteq
@tab ''
@tab
@tab \subset
@tab ''
@c ----------
@item \clubsuit
@tab ''
@tab
@tab \spadesuit
@tab ''
@tab
@tab \heartsuit
@tab ''
@c ----------
@item \diamondsuit
@tab ''
@tab
@tab \copyright
@tab '©'
@tab
@tab \leftarrow
@tab ''
@c ----------
@item \uparrow
@tab ''
@tab
@tab \rightarrow
@tab ''
@tab
@tab \downarrow
@tab ''
@c ----------
@item \leftrightarrow
@tab ''
@tab
@tab \updownarrow
@tab ''
@tab
@c ----------
@end multitable
@caption{@TeX{} character codes and the resulting symbols.}
@end float
@end ifhtml
@c ---------------------------------
@iftex
@float Table
The table below shows each @TeX{} character code and the corresponding Unicode
character:
@multitable @columnfractions 0.18 0.1 0.05 0.18 0.1 0.05 0.18 0.1
@headitem @TeX{} code
@tab Symbol
@tab
@tab @TeX{} code
@tab Symbol
@tab
@tab @TeX{} code
@tab Symbol
@c ----------
@item \alpha
@tab '@math{\alpha}'
@tab
@tab \beta
@tab '@math{\beta}'
@tab
@tab \gamma
@tab '@math{\gamma}'
@c ----------
@item \delta
@tab '@math{\delta}'
@tab
@tab \epsilon
@tab '@math{\epsilon}'
@tab
@tab \zeta
@tab '@math{\zeta}'
@c ----------
@item \eta
@tab '@math{\eta}'
@tab
@tab \theta
@tab '@math{\theta}'
@tab
@tab \vartheta
@tab '@math{\vartheta}'
@c ----------
@item \iota
@tab '@math{\iota}'
@tab
@tab \kappa
@tab '@math{\kappa}'
@tab
@tab \lambda
@tab '@math{\lambda}'
@c ----------
@item \mu
@tab '@math{\mu}'
@tab
@tab \nu
@tab '@math{\nu}'
@tab
@tab \xi
@tab '@math{\xi}'
@c ----------
@item \pi
@tab '@math{\pi}'
@tab
@tab \rho
@tab '@math{\rho}'
@tab
@tab \sigma
@tab '@math{\sigma}'
@c ----------
@item \varsigma
@tab '@math{\varsigma}'
@tab
@tab \tau
@tab '@math{\tau}'
@tab
@tab \phi
@tab '@math{\phi}'
@c ----------
@item \chi
@tab '@math{\chi}'
@tab
@tab \psi
@tab '@math{\psi}'
@tab
@tab \omega
@tab '@math{\omega}'
@c ----------
@item \upsilon
@tab '@math{\upsilon}'
@tab
@tab \Gamma
@tab '@math{\Gamma}'
@tab
@tab \Delta
@tab '@math{\Delta}'
@c ----------
@item \Theta
@tab '@math{\Theta}'
@tab
@tab \Lambda
@tab '@math{\Lambda}'
@tab
@tab \Pi
@tab '@math{\Pi}'
@c ----------
@item \Xi
@tab '@math{\Xi}'
@tab
@tab \Sigma
@tab '@math{\Sigma}'
@tab
@tab \Upsilon
@tab '@math{\Upsilon}'
@c ----------
@item \Phi
@tab '@math{\Phi}'
@tab
@tab \Psi
@tab '@math{\Psi}'
@tab
@tab \Omega
@tab '@math{\Omega}'
@c ----------
@item \Im
@tab '@math{\Im}'
@tab
@tab \Re
@tab '@math{\Re}'
@tab
@tab \leq
@tab '@math{\leq}'
@c ----------
@item \geq
@tab '@math{\geq}'
@tab
@tab \neq
@tab '@math{\neq}'
@tab
@tab \pm
@tab '@math{\pm}'
@c ----------
@item \infty
@tab '@math{\infty}'
@tab
@tab \partial
@tab '@math{\partial}'
@tab
@tab \approx
@tab '@math{\approx}'
@c ----------
@item \circ
@tab '@math{\circ}'
@tab
@tab \bullet
@tab '@math{\bullet}'
@tab
@tab \times
@tab '@math{\times}'
@c ----------
@item \sim
@tab '@math{\sim}'
@tab
@tab \nabla
@tab '@math{\nabla}'
@tab
@tab \ldots
@tab '@math{\ldots}'
@c ----------
@item \exists
@tab '@math{\exists}'
@tab
@tab \neg
@tab '@math{\neg}'
@tab
@tab \aleph
@tab '@math{\aleph}'
@c ----------
@item \forall
@tab '@math{\forall}'
@tab
@tab \cong
@tab '@math{\cong}'
@tab
@tab \wp
@tab '@math{\wp}'
@c ----------
@item \propto
@tab '@math{\propto}'
@tab
@tab \otimes
@tab '@math{\otimes}'
@tab
@tab \oplus
@tab '@math{\oplus}'
@c ----------
@item \oslash
@tab '@math{\oslash}'
@tab
@tab \cap
@tab '@math{\cap}'
@tab
@tab \cup
@tab '@math{\cup}'
@c ----------
@item \ni
@tab '@math{\ni}'
@tab
@tab \in
@tab '@math{\in}'
@tab
@tab \div
@tab '@math{\div}'
@c ----------
@item \equiv
@tab '@math{\equiv}'
@tab
@tab \int
@tab '@math{\int}'
@tab
@tab \perp
@tab '@math{\perp}'
@c ----------
@item \wedge
@tab '@math{\wedge}'
@tab
@tab \vee
@tab '@math{\vee}'
@tab
@tab \supseteq
@tab '@math{\supseteq}'
@c ----------
@item \supset
@tab '@math{\supset}'
@tab
@tab \subseteq
@tab '@math{\subseteq}'
@tab
@tab \subset
@tab '@math{\subset}'
@c ----------
@item \clubsuit
@tab '@math{\clubsuit}'
@tab
@tab \spadesuit
@tab '@math{\spadesuit}'
@tab
@tab \heartsuit
@tab '@math{\heartsuit}'
@c ----------
@item \diamondsuit
@tab '@math{\diamondsuit}'
@tab
@tab \copyright
@tab '@math{\copyright}'
@tab
@tab \leftarrow
@tab '@math{\leftarrow}'
@c ----------
@item \uparrow
@tab '@math{\uparrow}'
@tab
@tab \rightarrow
@tab '@math{\rightarrow}'
@tab
@tab \downarrow
@tab '@math{\downarrow}'
@c ----------
@item \leftrightarrow
@tab '@math{\leftrightarrow}'
@tab
@tab \updownarrow
@tab '@math{\updownarrow}'
@tab
@c ----------
@end multitable
@caption{@TeX{} character codes and the resulting symbols.}
@end float
@end iftex
@c ---------------------------------