view scripts/general/interp3.m @ 18640:0ede4dbb37f1

Overhaul interp1, interp2, interp3 functions. * NEWS: Announce change in 'cubic' interpolation method for interp2 to match Matlab. * bicubic.m: Use interp2 (..., "spline") in %!tests. * interp1.m: Improve docstring. Use switch statement instead of if/elseif tree for simpler code. Use more informative error message than 'table too short'. Add titles to demo plots. Add new demo block showing difference between 'pchip' and 'spline' methods. * interp2.m: Rewrite docstring. Use variable 'extrap' instead of 'extrapval' to match documentation. Use clearer messages in error() calls. Make 'cubic' use the same algorithm as 'pchip' for Matlab compatibility. Use Octave coding conventions regarding spaces between variable and parenthesis. Added input validation tests. * interp3.m: Rewrite docstring. Use clearer messages in error() calls. Make 'cubic' use the same algorithm as 'pchip' for Matlab compatibility. Simplify input processing. Rewrite some %!tests for clarity. Added input validation tests.
author Rik <rik@octave.org>
date Sun, 30 Mar 2014 14:18:43 -0700
parents 5cf9a02732b6
children 0e1f5a750d00
line wrap: on
line source

## Copyright (C) 2007-2013 David Bateman
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{vi} =} interp3 (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi})
## @deftypefnx {Function File} {@var{vi} =} interp3 (@var{v}, @var{xi}, @var{yi}, @var{zi})
## @deftypefnx {Function File} {@var{vi} =} interp3 (@var{v}, @var{n})
## @deftypefnx {Function File} {@var{vi} =} interp3 (@var{v})
## @deftypefnx {Function File} {@var{vi} =} interp3 (@dots{}, @var{method})
## @deftypefnx {Function File} {@var{vi} =} interp3 (@dots{}, @var{method}, @var{extrapval})
##
## Three-dimensional interpolation.
##
## Interpolate reference data @var{x}, @var{y}, @var{z}, @var{v} to determine
## @var{vi} at the coordinates @var{xi}, @var{yi}, @var{zi}.  The reference
## data @var{x}, @var{y}, @var{z} can be matrices, as returned by
## @code{meshgrid}, in which case the sizes of
## @var{x}, @var{y}, @var{z}, and @var{v} must be equal.  If @var{x}, @var{y},
## @var{z} are vectors describing a cubic grid then
## @code{length (@var{x}) == columns (@var{v})},
## @code{length (@var{y}) == rows (@var{v})},
## and @code{length (@var{z}) == size (@var{v}, 3)}.  In either case the input
## data must be strictly monotonic.
##
## If called without @var{x}, @var{y}, @var{z}, and just a single reference
## data matrix @var{v}, the 3-D region
## @code{@var{x} = 1:columns (@var{v}), @var{y} = 1:rows (@var{v}),
## @var{z} = 1:size (@var{v}, 3)} is assumed.
## This saves memory if the grid is regular and the distance between points is
## not important.
##
## If called with a single reference data matrix @var{v} and a refinement
## value @var{n}, then perform interpolation over a 3-D grid where each original
## interval has been recursively subdivided @var{n} times.  This results in
## @code{2^@var{n}-1} additional points for every interval in the original
## grid.  If @var{n} is omitted a value of 1 is used.  As an example, the
## interval [0,1] with @code{@var{n}==2} results in a refined interval with
## points at [0, 1/4, 1/2, 3/4, 1].
##
## The interpolation @var{method} is one of:
##
## @table @asis
## @item @qcode{"nearest"}
## Return the nearest neighbor.
##
## @item @qcode{"linear"} (default)
## Linear interpolation from nearest neighbors.
##
## @item @qcode{"pchip"}
## Piecewise cubic Hermite interpolating polynomial---shape-preserving
## interpolation with smooth first derivative (not implemented yet).
##
## @item @qcode{"cubic"}
## Cubic interpolation (same as @qcode{"pchip"} [not implemented yet]).
##
## @item @qcode{"spline"}
## Cubic spline interpolation---smooth first and second derivatives
## throughout the curve.
## @end table
##
## If @var{extrapval} is a number, then replace values beyond the endpoints
## with that number.  When unspecified, @var{extrapval} defaults to @code{NA}.
## Note that if @var{extrapval} is used, @var{method} must be specified as well.
## @seealso{interp1, interp2, interpn, meshgrid}
## @end deftypefn

## FIXME: Need to validate N argument (maybe change interpn).
## FIXME: Need to add support for 'pchip' method (maybe change interpn).
## FIXME: Need to add support for "extrap" string value (maybe change interpn).

function vi = interp3 (varargin)

  method = "linear";
  extrapval = NA;
  nargs = nargin;

  if (nargin < 1 || ! isnumeric (varargin{1}))
    print_usage ();
  endif

  if (ischar (varargin{end}))
    method = varargin{end};
    nargs--;
  elseif (nargs > 1 && ischar (varargin{end-1}))
    ## FIXME: No support for "extrap" string
    if (! isnumeric (varargin{end}) || ! isscalar (varargin{end}))
      error ("interp3: EXTRAPVAL must be a numeric scalar");
    endif
    extrapval = varargin{end};
    method = varargin{end-1};
    nargs -= 2;
  endif

  if (method(1) == "*")
    warning ("interp3: ignoring unsupported '*' flag to METHOD");
    method(1) = [];
  endif

  if (nargs < 3)
    ## Calling form interp3 (v) OR interp3 (v, n)
    v = varargin{1};
    if (ndims (v) != 3)
      error ("interp3: V must be a 3-D array of values");
    endif
    n = varargin(2:nargs);
    v = permute (v, [2, 1, 3]);
    vi = ipermute (interpn (v, n{:}, method, extrapval), [2, 1, 3]);

  elseif (nargs == 4 && ! isvector (varargin{1}))
    ## Calling form interp3 (v, xi, yi, zi)
    v = varargin{1};
    if (ndims (v) != 3)
      error ("interp3: V must be a 3-D array of values");
    endif
    xi = varargin(2:4);
    if (any (! cellfun (@isvector, xi)))
      ## Meshgridded values rather than vectors
      if (! size_equal (xi{:}))
        error ("interp3: XI, YI, and ZI dimensions must be equal");
      endif
      for i = 1 : 3
        xi{i} = permute (xi{i}, [2, 1, 3]);
      endfor
    endif
    v = permute (v, [2, 1, 3]);
    vi = ipermute (interpn (v, xi{:}, method, extrapval), [2, 1, 3]);

  elseif (nargs == 7)
    ## Calling form interp3 (x, y, z, v, xi, yi, zi)
    v = varargin{4};
    if (ndims (v) != 3)
      error ("interp3: V must be a 3-D array of values");
    endif
    x = varargin(1:3);
    if (any (! cellfun (@isvector, x)))
      ## Meshgridded values rather than vectors
      if (! size_equal (x{:}, v))
        error ("interp3: X, Y, Z, and V dimensions must be equal");
      endif
      for i = 1 : 3
        x{i} = permute (x{i}, [2, 1, 3]);
      endfor
    endif
    xi = varargin(5:7);
    if (any (! cellfun (@isvector, xi)))
      ## Meshgridded values rather than vectors
      if (! size_equal (xi{:}))
        error ("interp3: XI, YI, and ZI dimensions must be equal");
      endif
      for i = 1 : 3
        xi{i} = permute (xi{i}, [2, 1, 3]);
      endfor
    endif
    v = permute (v, [2, 1, 3]);
    vi = ipermute (interpn (x{:}, v, xi{:}, method, extrapval), [2, 1, 3]);

  else
    error ("interp3: wrong number or incorrectly formatted input arguments");
  endif

endfunction


%% FIXME: Need some demo blocks here to show off the function like interp2.m.

%!test  # basic test
%! x = y = z = -1:1;  y = y + 2;
%! f = @(x,y,z) x.^2 - y - z.^2;
%! [xx, yy, zz] = meshgrid (x, y, z);
%! v = f (xx,yy,zz);
%! xi = yi = zi = -1:0.5:1;  yi = yi + 2.1;
%! [xxi, yyi, zzi] = meshgrid (xi, yi, zi);
%! vi = interp3 (x, y, z, v, xxi, yyi, zzi);
%! [xxi, yyi, zzi] = ndgrid (yi, xi, zi);
%! vi2 = interpn (y, x, z, v, xxi, yyi, zzi);
%! assert (vi, vi2, 10*eps);

%!test  # meshgridded xi, yi, zi
%! x = z = 1:2;  y = 1:3;
%! v = ones ([3,2,2]);  v(:,2,1) = [7;5;4];  v(:,1,2) = [2;3;5];
%! xi = zi = .6:1.6;  yi = 1; 
%! [xxi3, yyi3, zzi3] = meshgrid (xi, yi, zi);
%! [xxi, yyi, zzi] = ndgrid (yi, xi, zi);
%! vi = interp3 (x, y, z, v, xxi3, yyi3, zzi3, "nearest");
%! vi2 = interpn (y, x, z, v, xxi, yyi, zzi, "nearest");
%! assert (vi, vi2);

%!test  # vector xi, yi, zi
%! x = z = 1:2;  y = 1:3;
%! v = ones ([3,2,2]);  v(:,2,1) = [7;5;4];  v(:,1,2) = [2;3;5];
%! xi = zi = .6:1.6;  yi = 1; 
%! vi = interp3 (x, y, z, v, xi, yi, zi, "nearest");
%! vi2 = interpn (y, x, z, v, yi, xi, zi,"nearest");
%! assert (vi, vi2);

%!test  # vector xi+1 with extrap value
%! x = z = 1:2;  y = 1:3;
%! v = ones ([3,2,2]);  v(:,2,1) = [7;5;4];  v(:,1,2) = [2;3;5];
%! xi = zi = .6:1.6;  yi = 1; 
%! vi = interp3 (x, y, z, v, xi+1, yi, zi, "nearest", 3);
%! vi2 = interpn (y, x, z, v, yi, xi+1, zi, "nearest", 3);
%! assert (vi, vi2);

%!test  # input value matrix--no x,y,z
%! x = z = 1:2;  y = 1:3;
%! v = ones ([3,2,2]);  v(:,2,1) = [7;5;4];  v(:,1,2) = [2;3;5];
%! xi = zi = .6:1.6;  yi = 1; 
%! vi = interp3 (v, xi, yi, zi, "nearest");
%! vi2 = interpn (v, yi, xi, zi,"nearest");
%! assert (vi, vi2);

%!test  # input value matrix--no x,y,z, with extrap value
%! x = z = 1:2;  y = 1:3;
%! v = ones ([3,2,2]);  v(:,2,1) = [7;5;4];  v(:,1,2) = [2;3;5];
%! xi = zi = .6:1.6;  yi = 1; 
%! vi = interp3 (v, xi, yi, zi, "nearest", 3);
%! vi2 = interpn (v, yi, xi, zi, "nearest", 3);
%! assert (vi, vi2);

%!shared z, zout, tol
%! z = zeros (3, 3, 3);
%! zout = zeros (5, 5, 5);
%! z(:,:,1) = [1 3 5; 3 5 7; 5 7 9];
%! z(:,:,2) = z(:,:,1) + 2;
%! z(:,:,3) = z(:,:,2) + 2;
%! for n = 1:5
%!   zout(:,:,n) = [1 2 3 4 5;
%!                  2 3 4 5 6; 
%!                  3 4 5 6 7;
%!                  4 5 6 7 8;
%!                  5 6 7 8 9] + (n-1);
%! end
%! tol = 10 * eps;
%!
%!assert (interp3 (z), zout, tol)
%!assert (interp3 (z, "linear"), zout, tol)
%!assert (interp3 (z, "spline"), zout, tol)

%% Test input validation
%!error interp3 ()
%!error interp3 ({1})
%!error <EXTRAPVAL must be a numeric scalar> interp3 (1,2,3,4,1,2,3,"linear", {1})
%!error <EXTRAPVAL must be a numeric scalar> interp3 (1,2,3,4,1,2,3,"linear", ones (2,2))
%!warning <ignoring unsupported '\*' flag> interp3 (rand (3,3,3), 1, "*linear");
%!error <V must be a 3-D array> interp3 (rand (2,2))
%!error <V must be a 3-D array> interp3 (rand (2,2), 1,1,1)
%!error <XI, YI, and ZI dimensions must be equal> interp3 (rand (2,2,2), 1,1, ones (2,2))
%!error <V must be a 3-D array> interp3 (1:2, 1:2, 1:2, rand (2,2), 1,1,1)
%!error <X, Y, Z, and V dimensions must be equal> interp3 (ones(1,2,2), ones(2,2,2), ones(2,2,2), rand (2,2,2), 1,1,1)
%!error <XI, YI, and ZI dimensions must be equal> interp3 (1:2, 1:2, 1:2, rand (2,2,2), 1,1, ones (2,2))