view scripts/sparse/pcg.m @ 14237:11949c9795a0

Revamp %!demos in m-files to use Octave coding conventions on spacing, etc. Add clf() to all demos using plot features to get reproducibility. Use 64 as input to all colormaps (jet (64)) to get reproducibility. * bicubic.m, cell2mat.m, celldisp.m, cplxpair.m, interp1.m, interp2.m, interpft.m, interpn.m, profile.m, profshow.m, convhull.m, delaunay.m, griddata.m, inpolygon.m, voronoi.m, autumn.m, bone.m, contrast.m, cool.m, copper.m, flag.m, gmap40.m, gray.m, hot.m, hsv.m, image.m, imshow.m, jet.m, ocean.m, pink.m, prism.m, rainbow.m, spring.m, summer.m, white.m, winter.m, condest.m, onenormest.m, axis.m, clabel.m, colorbar.m, comet.m, comet3.m, compass.m, contour.m, contour3.m, contourf.m, cylinder.m, daspect.m, ellipsoid.m, errorbar.m, ezcontour.m, ezcontourf.m, ezmesh.m, ezmeshc.m, ezplot.m, ezplot3.m, ezpolar.m, ezsurf.m, ezsurfc.m, feather.m, fill.m, fplot.m, grid.m, hold.m, isosurface.m, legend.m, loglog.m, loglogerr.m, pareto.m, patch.m, pbaspect.m, pcolor.m, pie.m, pie3.m, plot3.m, plotmatrix.m, plotyy.m, polar.m, quiver.m, quiver3.m, rectangle.m, refreshdata.m, ribbon.m, rose.m, scatter.m, scatter3.m, semilogx.m, semilogxerr.m, semilogy.m, semilogyerr.m, shading.m, slice.m, sombrero.m, stairs.m, stem.m, stem3.m, subplot.m, surf.m, surfc.m, surfl.m, surfnorm.m, text.m, title.m, trimesh.m, triplot.m, trisurf.m, uigetdir.m, uigetfile.m, uimenu.m, uiputfile.m, waitbar.m, xlim.m, ylim.m, zlim.m, mkpp.m, pchip.m, polyaffine.m, spline.m, bicgstab.m, cgs.m, gplot.m, pcg.m, pcr.m, treeplot.m, strtok.m, demo.m, example.m, rundemos.m, speed.m, test.m, calendar.m, datestr.m, datetick.m, weekday.m: Revamp %!demos to use Octave coding conventions on spacing, etc.
author Rik <octave@nomad.inbox5.com>
date Fri, 20 Jan 2012 12:59:53 -0800
parents 72c96de7a403
children ce2b59a6d0e5
line wrap: on
line source

## Copyright (C) 2004-2012 Piotr Krzyzanowski
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{x} =} pcg (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{m1}, @var{m2}, @var{x0}, @dots{})
## @deftypefnx {Function File} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}, @var{eigest}] =} pcg (@dots{})
##
## Solve the linear system of equations @code{@var{A} * @var{x} = @var{b}}
## by means of the Preconditioned Conjugate Gradient iterative
## method.  The input arguments are
##
## @itemize
## @item
## @var{A} can be either a square (preferably sparse) matrix or a
## function handle, inline function or string containing the name
## of a function which computes @code{@var{A} * @var{x}}.  In principle
## @var{A} should be symmetric and positive definite; if @code{pcg}
## finds @var{A} to not be positive definite, you will get a warning
## message and the @var{flag} output parameter will be set.
##
## @item
## @var{b} is the right hand side vector.
##
## @item
## @var{tol} is the required relative tolerance for the residual error,
## @code{@var{b} - @var{A} * @var{x}}.  The iteration stops if
## @code{norm (@var{b} - @var{A} * @var{x}) <=
##       @var{tol} * norm (@var{b} - @var{A} * @var{x0})}.
## If @var{tol} is empty or is omitted, the function sets
## @code{@var{tol} = 1e-6} by default.
##
## @item
## @var{maxit} is the maximum allowable number of iterations; if
## @code{[]} is supplied for @code{maxit}, or @code{pcg} has less
## arguments, a default value equal to 20 is used.
##
## @item
## @var{m} = @var{m1} * @var{m2} is the (left) preconditioning matrix, so that
## the iteration is (theoretically) equivalent to solving by @code{pcg}
## @code{@var{P} *
## @var{x} = @var{m} \ @var{b}}, with @code{@var{P} = @var{m} \ @var{A}}.
## Note that a proper choice of the preconditioner may dramatically
## improve the overall performance of the method.  Instead of matrices
## @var{m1} and @var{m2}, the user may pass two functions which return
## the results of applying the inverse of @var{m1} and @var{m2} to
## a vector (usually this is the preferred way of using the preconditioner).
## If @code{[]} is supplied for @var{m1}, or @var{m1} is omitted, no
## preconditioning is applied.  If @var{m2} is omitted, @var{m} = @var{m1}
## will be used as preconditioner.
##
## @item
## @var{x0} is the initial guess.  If @var{x0} is empty or omitted, the
## function sets @var{x0} to a zero vector by default.
## @end itemize
##
## The arguments which follow @var{x0} are treated as parameters, and
## passed in a proper way to any of the functions (@var{A} or @var{m})
## which are passed to @code{pcg}.  See the examples below for further
## details.  The output arguments are
##
## @itemize
## @item
## @var{x} is the computed approximation to the solution of
## @code{@var{A} * @var{x} = @var{b}}.
##
## @item
## @var{flag} reports on the convergence.  @code{@var{flag} = 0} means
## the solution converged and the tolerance criterion given by @var{tol}
## is satisfied.  @code{@var{flag} = 1} means that the @var{maxit} limit
## for the iteration count was reached.  @code{@var{flag} = 3} reports that
## the (preconditioned) matrix was found not positive definite.
##
## @item
## @var{relres} is the ratio of the final residual to its initial value,
## measured in the Euclidean norm.
##
## @item
## @var{iter} is the actual number of iterations performed.
##
## @item
## @var{resvec} describes the convergence history of the method.
## @code{@var{resvec} (i,1)} is the Euclidean norm of the residual, and
## @code{@var{resvec} (i,2)} is the preconditioned residual norm,
## after the (@var{i}-1)-th iteration, @code{@var{i} =
## 1, 2, @dots{}, @var{iter}+1}.  The preconditioned residual norm
## is defined as
## @code{norm (@var{r}) ^ 2 = @var{r}' * (@var{m} \ @var{r})} where
## @code{@var{r} = @var{b} - @var{A} * @var{x}}, see also the
## description of @var{m}.  If @var{eigest} is not required, only
## @code{@var{resvec} (:,1)} is returned.
##
## @item
## @var{eigest} returns the estimate for the smallest @code{@var{eigest}
## (1)} and largest @code{@var{eigest} (2)} eigenvalues of the
## preconditioned matrix @code{@var{P} = @var{m} \ @var{A}}.  In
## particular, if no preconditioning is used, the estimates for the
## extreme eigenvalues of @var{A} are returned.  @code{@var{eigest} (1)}
## is an overestimate and @code{@var{eigest} (2)} is an underestimate,
## so that @code{@var{eigest} (2) / @var{eigest} (1)} is a lower bound
## for @code{cond (@var{P}, 2)}, which nevertheless in the limit should
## theoretically be equal to the actual value of the condition number.
## The method which computes @var{eigest} works only for symmetric positive
## definite @var{A} and @var{m}, and the user is responsible for
## verifying this assumption.
## @end itemize
##
## Let us consider a trivial problem with a diagonal matrix (we exploit the
## sparsity of A)
##
## @example
## @group
##      n = 10;
##      A = diag (sparse (1:n));
##      b = rand (n, 1);
##      [l, u, p, q] = luinc (A, 1.e-3);
## @end group
## @end example
##
## @sc{Example 1:} Simplest use of @code{pcg}
##
## @example
##   x = pcg(A,b)
## @end example
##
## @sc{Example 2:} @code{pcg} with a function which computes
## @code{@var{A} * @var{x}}
##
## @example
## @group
##   function y = apply_a (x)
##     y = [1:N]'.*x;
##   endfunction
##
##   x = pcg ("apply_a", b)
## @end group
## @end example
##
## @sc{Example 3:} @code{pcg} with a preconditioner: @var{l} * @var{u}
##
## @example
## x = pcg (A, b, 1.e-6, 500, l*u);
## @end example
##
## @sc{Example 4:} @code{pcg} with a preconditioner: @var{l} * @var{u}.
## Faster than @sc{Example 3} since lower and upper triangular matrices
## are easier to invert
##
## @example
## x = pcg (A, b, 1.e-6, 500, l, u);
## @end example
##
## @sc{Example 5:} Preconditioned iteration, with full diagnostics.  The
## preconditioner (quite strange, because even the original matrix
## @var{A} is trivial) is defined as a function
##
## @example
## @group
##   function y = apply_m (x)
##     k = floor (length (x) - 2);
##     y = x;
##     y(1:k) = x(1:k)./[1:k]';
##   endfunction
##
##   [x, flag, relres, iter, resvec, eigest] = ...
##                      pcg (A, b, [], [], "apply_m");
##   semilogy (1:iter+1, resvec);
## @end group
## @end example
##
## @sc{Example 6:} Finally, a preconditioner which depends on a
## parameter @var{k}.
##
## @example
## @group
##   function y = apply_M (x, varargin)
##   K = varargin@{1@};
##   y = x;
##   y(1:K) = x(1:K)./[1:K]';
##   endfunction
##
##   [x, flag, relres, iter, resvec, eigest] = ...
##        pcg (A, b, [], [], "apply_m", [], [], 3)
## @end group
## @end example
##
## References:
##
## @enumerate
## @item
## C.T. Kelley, @cite{Iterative Methods for Linear and Nonlinear Equations},
## SIAM, 1995. (the base PCG algorithm)
##
## @item
## Y. Saad, @cite{Iterative Methods for Sparse Linear Systems}, PWS 1996.
## (condition number estimate from PCG) Revised version of this book is
## available online at @url{http://www-users.cs.umn.edu/~saad/books.html}
## @end enumerate
##
## @seealso{sparse, pcr}
## @end deftypefn

## Author: Piotr Krzyzanowski <piotr.krzyzanowski@mimuw.edu.pl>
## Modified by: Vittoria Rezzonico <vittoria.rezzonico@epfl.ch>
##    - Add the ability to provide the pre-conditioner as two separate
## matrices

function [x, flag, relres, iter, resvec, eigest] = pcg (A, b, tol, maxit, m1, m2, x0, varargin)

  ## M = M1*M2

  if (nargin < 7 || isempty (x0))
    x = zeros (size (b));
  else
    x = x0;
  endif

  if (nargin < 5 || isempty (m1))
     exist_m1 = 0;
  else
     exist_m1 = 1;
  endif

  if (nargin < 6 || isempty (m2))
     exist_m2 = 0;
  else
     exist_m2 = 1;
  endif

  if (nargin < 4 || isempty (maxit))
    maxit = min (size (b, 1), 20);
  endif

  maxit += 2;

  if (nargin < 3 || isempty (tol))
    tol = 1e-6;
  endif

  preconditioned_residual_out = false;
  if (nargout > 5)
    T = zeros (maxit, maxit);
    preconditioned_residual_out = true;
  endif

  ## Assume A is positive definite.
  matrix_positive_definite = true;

  p = zeros (size (b));
  oldtau = 1;
  if (isnumeric (A))
    ## A is a matrix.
    r = b - A*x;
  else
    ## A should be a function.
    r = b - feval (A, x, varargin{:});
  endif

  resvec(1,1) = norm (r);
  alpha = 1;
  iter = 2;

  while (resvec (iter-1,1) > tol * resvec (1,1) && iter < maxit)
    if (exist_m1)
      if(isnumeric (m1))
        y = m1 \ r;
      else
        y = feval (m1, r, varargin{:});
      endif
    else
      y = r;
    endif
    if (exist_m2)
      if (isnumeric (m2))
        z = m2 \ y;
      else
        z = feval (m2, y, varargin{:});
      endif
    else
      z = y;
    endif
    tau = z' * r;
    resvec (iter-1,2) = sqrt (tau);
    beta = tau / oldtau;
    oldtau = tau;
    p = z + beta * p;
    if (isnumeric (A))
      ## A is a matrix.
      w = A * p;
    else
      ## A should be a function.
      w = feval (A, p, varargin{:});
    endif
    ## Needed only for eigest.
    oldalpha = alpha;
    alpha = tau / (p'*w);
    if (alpha <= 0.0)
      ## Negative matrix.
      matrix_positive_definite = false;
    endif
    x += alpha * p;
    r -= alpha * w;
    if (nargout > 5 && iter > 2)
      T(iter-1:iter, iter-1:iter) = T(iter-1:iter, iter-1:iter) + ...
          [1 sqrt(beta); sqrt(beta) beta]./oldalpha;
      ## EVS = eig(T(2:iter-1,2:iter-1));
      ## fprintf(stderr,"PCG condest: %g (iteration: %d)\n", max(EVS)/min(EVS),iter);
    endif
    resvec (iter,1) = norm (r);
    iter++;
  endwhile

  if (nargout > 5)
    if (matrix_positive_definite)
      if (iter > 3)
        T = T(2:iter-2,2:iter-2);
        l = eig (T);
        eigest = [min(l), max(l)];
        ## fprintf (stderr, "pcg condest: %g\n", eigest(2)/eigest(1));
      else
        eigest = [NaN, NaN];
        warning ("pcg: eigenvalue estimate failed: iteration converged too fast");
      endif
    else
      eigest = [NaN, NaN];
    endif

    ## Apply the preconditioner once more and finish with the precond
    ## residual.
    if (exist_m1)
      if (isnumeric (m1))
        y = m1 \ r;
      else
        y = feval (m1, r, varargin{:});
      endif
    else
      y = r;
    endif
    if (exist_m2)
      if (isnumeric (m2))
        z = m2 \ y;
      else
        z = feval (m2, y, varargin{:});
      endif
    else
      z = y;
    endif

    resvec (iter-1,2) = sqrt (r' * z);
  else
    resvec = resvec(:,1);
  endif

  flag = 0;
  relres = resvec (iter-1,1) ./ resvec(1,1);
  iter -= 2;
  if (iter >= maxit - 2)
    flag = 1;
    if (nargout < 2)
      warning ("pcg: maximum number of iterations (%d) reached\n", iter);
      warning ("the initial residual norm was reduced %g times.\n", ...
               1.0 / relres);
    endif
  elseif (nargout < 2)
    fprintf (stderr, "pcg: converged in %d iterations. ", iter);
    fprintf (stderr, "the initial residual norm was reduced %g times.\n",...
             1.0/relres);
  endif

  if (! matrix_positive_definite)
    flag = 3;
    if (nargout < 2)
      warning ("pcg: matrix not positive definite?\n");
    endif
  endif
endfunction


%!demo
%!  # Simplest usage of pcg (see also 'help pcg')
%! 
%!  N = 10;
%!  A = diag ([1:N]); b = rand (N, 1);
%!  y = A \ b;  # y is the true solution
%!  x = pcg (A, b);
%!  printf ("The solution relative error is %g\n", norm (x - y) / norm (y));
%! 
%!  # You shouldn't be afraid if pcg issues some warning messages in this
%!  # example: watch out in the second example, why it takes N iterations
%!  # of pcg to converge to (a very accurate, by the way) solution

%!demo
%!  # Full output from pcg, except for the eigenvalue estimates
%!  # We use this output to plot the convergence history
%! 
%!  N = 10;
%!  A = diag ([1:N]); b = rand (N, 1);
%!  X = A \ b;  # X is the true solution
%!  [x, flag, relres, iter, resvec] = pcg (A, b);
%!  printf ("The solution relative error is %g\n", norm (x - X) / norm (X));
%!  title ("Convergence history");
%!  semilogy ([0:iter], resvec / resvec(1), "o-g");
%!  xlabel ("Iteration"); ylabel ("log(||b-Ax||/||b||)");
%!  legend ("relative residual");

%!demo
%!  # Full output from pcg, including the eigenvalue estimates
%!  # Hilbert matrix is extremely ill-conditioned, so pcg WILL have problems
%! 
%!  N = 10;
%!  A = hilb (N); b = rand (N, 1);
%!  X = A \ b;  # X is the true solution
%!  [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], 200);
%!  printf ("The solution relative error is %g\n", norm (x - X) / norm (X));
%!  printf ("Condition number estimate is %g\n", eigest(2) / eigest(1));
%!  printf ("Actual condition number is   %g\n", cond (A));
%!  title ("Convergence history");
%!  semilogy ([0:iter], resvec, ["o-g";"+-r"]);
%!  xlabel ("Iteration"); ylabel ("log(||b-Ax||)");
%!  legend ("absolute residual", "absolute preconditioned residual");

%!demo
%!
%!  # Full output from pcg, including the eigenvalue estimates
%!  # We use the 1-D Laplacian matrix for A, and cond(A) = O(N^2)
%!  # and that's the reason we need some preconditioner; here we take
%!  # a very simple and not powerful Jacobi preconditioner,
%!  # which is the diagonal of A
%!
%!  N = 100;
%!  A = zeros (N, N);
%!  for i = 1 : N - 1 # form 1-D Laplacian matrix
%!    A(i:i+1, i:i+1) = [2 -1; -1 2];
%!  endfor
%!  b = rand (N, 1);
%!  X = A \ b;  # X is the true solution
%!  maxit = 80;
%!  printf ("System condition number is %g\n", cond (A));
%!  # No preconditioner: the convergence is very slow!
%!
%!  [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], maxit);
%!  printf ("System condition number estimate is %g\n", eigest(2) / eigest(1));
%!  title ("Convergence history");
%!  semilogy ([0:iter], resvec(:,1), "o-g");
%!  xlabel ("Iteration"); ylabel ("log(||b-Ax||)");
%!  legend ("NO preconditioning: absolute residual");
%!
%!  pause (1);
%!  # Test Jacobi preconditioner: it will not help much!!!
%!
%!  M = diag (diag (A)); # Jacobi preconditioner
%!  [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], maxit, M);
%!  printf ("JACOBI preconditioned system condition number estimate is %g\n", eigest(2) / eigest(1));
%!  hold on;
%!  semilogy ([0:iter], resvec(:,1), "o-r");
%!  legend ("NO preconditioning: absolute residual", ...
%!          "JACOBI preconditioner: absolute residual");
%!
%!  pause (1);
%!  # Test nonoverlapping block Jacobi preconditioner: it will help much!
%!
%!  M = zeros (N, N); k = 4;
%!  for i = 1 : k : N # form 1-D Laplacian matrix
%!    M(i:i+k-1, i:i+k-1) = A(i:i+k-1, i:i+k-1);
%!  endfor
%!  [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], maxit, M);
%!  printf ("BLOCK JACOBI preconditioned system condition number estimate is %g\n", eigest(2) / eigest(1));
%!  semilogy ([0:iter], resvec(:,1), "o-b");
%!  legend ("NO preconditioning: absolute residual", ...
%!          "JACOBI preconditioner: absolute residual", ...
%!          "BLOCK JACOBI preconditioner: absolute residual");
%!  hold off;

%!test
%! # solve small diagonal system
%!
%! N = 10;
%! A = diag ([1:N]); b = rand (N, 1);
%! X = A \ b;  # X is the true solution
%! [x, flag] = pcg (A, b, [], N+1);
%! assert (norm (x - X) / norm (X), 0, 1e-10);
%! assert (flag, 0);

%!test
%! # solve small indefinite diagonal system
%! # despite A is indefinite, the iteration continues and converges
%! # indefiniteness of A is detected
%!
%! N = 10;
%! A = diag([1:N] .* (-ones(1, N) .^ 2)); b = rand (N, 1);
%! X = A \ b;  # X is the true solution
%! [x, flag] = pcg (A, b, [], N+1);
%! assert (norm (x - X) / norm (X), 0, 1e-10);
%! assert (flag, 3);

%!test
%! # solve tridiagonal system, do not converge in default 20 iterations
%!
%! N = 100;
%! A = zeros (N, N);
%! for i = 1 : N - 1 # form 1-D Laplacian matrix
%!   A(i:i+1, i:i+1) = [2 -1; -1 2];
%! endfor
%! b = ones (N, 1);
%! X = A \ b;  # X is the true solution
%! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, 1e-12);
%! assert (flag);
%! assert (relres > 1.0);
%! assert (iter, 20); # should perform max allowable default number of iterations

%!test
%! # solve tridiagonal system with 'perfect' preconditioner
%! # which converges in one iteration, so the eigest does not
%! # work and issues a warning
%!
%! N = 100;
%! A = zeros (N, N);
%! for i = 1 : N - 1 # form 1-D Laplacian matrix
%!         A (i:i+1, i:i+1) = [2 -1; -1 2];
%! endfor
%! b = ones (N, 1);
%! X = A \ b;  # X is the true solution
%! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], [], A, [], b);
%! assert (norm (x - X) / norm (X), 0, 1e-6);
%! assert (flag, 0);
%! assert (iter, 1); # should converge in one iteration
%! assert (isnan (eigest), isnan ([NaN, NaN]));