view liboctave/fCColVector.cc @ 11518:141b3fb5cef7

style fixes
author John W. Eaton <jwe@octave.org>
date Thu, 13 Jan 2011 16:52:30 -0500
parents 4d1fc073fbb7
children fd0a3ac60b0e
line wrap: on
line source

// ColumnVector manipulations.
/*

Copyright (C) 1994, 1995, 1996, 1997, 2000, 2001, 2002, 2003, 2004,
              2005, 2007, 2008 John W. Eaton
Copyright (C) 2010 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <iostream>

#include "Array-util.h"
#include "f77-fcn.h"
#include "functor.h"
#include "lo-error.h"
#include "mx-base.h"
#include "mx-inlines.cc"
#include "oct-cmplx.h"

// Fortran functions we call.

extern "C"
{
  F77_RET_T
  F77_FUNC (cgemv, CGEMV) (F77_CONST_CHAR_ARG_DECL,
                           const octave_idx_type&, const octave_idx_type&,
                           const FloatComplex&, const FloatComplex*,
                           const octave_idx_type&, const FloatComplex*,
                           const octave_idx_type&, const FloatComplex&,
                           FloatComplex*, const octave_idx_type&
                           F77_CHAR_ARG_LEN_DECL);
}

// FloatComplex Column Vector class

FloatComplexColumnVector::FloatComplexColumnVector (const FloatColumnVector& a)
   : MArray<FloatComplex> (a)
{
}

bool
FloatComplexColumnVector::operator == (const FloatComplexColumnVector& a) const
{
  octave_idx_type len = length ();
  if (len != a.length ())
    return 0;
  return mx_inline_equal (len, data (), a.data ());
}

bool
FloatComplexColumnVector::operator != (const FloatComplexColumnVector& a) const
{
  return !(*this == a);
}

// destructive insert/delete/reorder operations

FloatComplexColumnVector&
FloatComplexColumnVector::insert (const FloatColumnVector& a, octave_idx_type r)
{
  octave_idx_type a_len = a.length ();

  if (r < 0 || r + a_len > length ())
    {
      (*current_liboctave_error_handler) ("range error for insert");
      return *this;
    }

  if (a_len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < a_len; i++)
        xelem (r+i) = a.elem (i);
    }

  return *this;
}

FloatComplexColumnVector&
FloatComplexColumnVector::insert (const FloatComplexColumnVector& a, octave_idx_type r)
{
  octave_idx_type a_len = a.length ();

  if (r < 0 || r + a_len > length ())
    {
      (*current_liboctave_error_handler) ("range error for insert");
      return *this;
    }

  if (a_len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < a_len; i++)
        xelem (r+i) = a.elem (i);
    }

  return *this;
}

FloatComplexColumnVector&
FloatComplexColumnVector::fill (float val)
{
  octave_idx_type len = length ();

  if (len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < len; i++)
        xelem (i) = val;
    }

  return *this;
}

FloatComplexColumnVector&
FloatComplexColumnVector::fill (const FloatComplex& val)
{
  octave_idx_type len = length ();

  if (len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < len; i++)
        xelem (i) = val;
    }


  return *this;
}

FloatComplexColumnVector&
FloatComplexColumnVector::fill (float val, octave_idx_type r1, octave_idx_type r2)
{
  octave_idx_type len = length ();

  if (r1 < 0 || r2 < 0 || r1 >= len || r2 >= len)
    {
      (*current_liboctave_error_handler) ("range error for fill");
      return *this;
    }

  if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; }

  if (r2 >= r1)
    {
      make_unique ();

      for (octave_idx_type i = r1; i <= r2; i++)
        xelem (i) = val;
    }

  return *this;
}

FloatComplexColumnVector&
FloatComplexColumnVector::fill (const FloatComplex& val, octave_idx_type r1, octave_idx_type r2)
{
  octave_idx_type len = length ();

  if (r1 < 0 || r2 < 0 || r1 >= len || r2 >= len)
    {
      (*current_liboctave_error_handler) ("range error for fill");
      return *this;
    }

  if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; }

  if (r2 >= r1)
    {
      make_unique ();

      for (octave_idx_type i = r1; i <= r2; i++)
        xelem (i) = val;
    }

  return *this;
}

FloatComplexColumnVector
FloatComplexColumnVector::stack (const FloatColumnVector& a) const
{
  octave_idx_type len = length ();
  octave_idx_type nr_insert = len;
  FloatComplexColumnVector retval (len + a.length ());
  retval.insert (*this, 0);
  retval.insert (a, nr_insert);
  return retval;
}

FloatComplexColumnVector
FloatComplexColumnVector::stack (const FloatComplexColumnVector& a) const
{
  octave_idx_type len = length ();
  octave_idx_type nr_insert = len;
  FloatComplexColumnVector retval (len + a.length ());
  retval.insert (*this, 0);
  retval.insert (a, nr_insert);
  return retval;
}

FloatComplexRowVector 
FloatComplexColumnVector::hermitian (void) const
{
  return MArray<FloatComplex>::hermitian (std::conj);
}

FloatComplexRowVector 
FloatComplexColumnVector::transpose (void) const
{
  return MArray<FloatComplex>::transpose ();
}

FloatColumnVector
FloatComplexColumnVector::abs (void) const
{
  return do_mx_unary_map<float, FloatComplex, std::abs> (*this);
}

FloatComplexColumnVector
conj (const FloatComplexColumnVector& a)
{
  return do_mx_unary_map<FloatComplex, FloatComplex, std::conj> (a);
}

// resize is the destructive equivalent for this one

FloatComplexColumnVector
FloatComplexColumnVector::extract (octave_idx_type r1, octave_idx_type r2) const
{
  if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; }

  octave_idx_type new_r = r2 - r1 + 1;

  FloatComplexColumnVector result (new_r);

  for (octave_idx_type i = 0; i < new_r; i++)
    result.elem (i) = elem (r1+i);

  return result;
}

FloatComplexColumnVector
FloatComplexColumnVector::extract_n (octave_idx_type r1, octave_idx_type n) const
{
  FloatComplexColumnVector result (n);

  for (octave_idx_type i = 0; i < n; i++)
    result.elem (i) = elem (r1+i);

  return result;
}

// column vector by column vector -> column vector operations

FloatComplexColumnVector&
FloatComplexColumnVector::operator += (const FloatColumnVector& a)
{
  octave_idx_type len = length ();

  octave_idx_type a_len = a.length ();

  if (len != a_len)
    {
      gripe_nonconformant ("operator +=", len, a_len);
      return *this;
    }

  if (len == 0)
    return *this;

  FloatComplex *d = fortran_vec (); // Ensures only one reference to my privates!

  mx_inline_add2 (len, d, a.data ());
  return *this;
}

FloatComplexColumnVector&
FloatComplexColumnVector::operator -= (const FloatColumnVector& a)
{
  octave_idx_type len = length ();

  octave_idx_type a_len = a.length ();

  if (len != a_len)
    {
      gripe_nonconformant ("operator -=", len, a_len);
      return *this;
    }

  if (len == 0)
    return *this;

  FloatComplex *d = fortran_vec (); // Ensures only one reference to my privates!

  mx_inline_sub2 (len, d, a.data ());
  return *this;
}

// matrix by column vector -> column vector operations

FloatComplexColumnVector
operator * (const FloatComplexMatrix& m, const FloatColumnVector& a)
{
  FloatComplexColumnVector tmp (a);
  return m * tmp;
}

FloatComplexColumnVector
operator * (const FloatComplexMatrix& m, const FloatComplexColumnVector& a)
{
  FloatComplexColumnVector retval;

  octave_idx_type nr = m.rows ();
  octave_idx_type nc = m.cols ();

  octave_idx_type a_len = a.length ();

  if (nc != a_len)
    gripe_nonconformant ("operator *", nr, nc, a_len, 1);
  else
    {
      retval.clear (nr);

      if (nr != 0)
        {
          FloatComplex *y = retval.fortran_vec ();

          F77_XFCN (cgemv, CGEMV, (F77_CONST_CHAR_ARG2 ("N", 1),
                                   nr, nc, 1.0f, m.data (), nr,
                                   a.data (), 1, 0.0f, y, 1
                                   F77_CHAR_ARG_LEN (1)));
        }
    }

  return retval;
}

// matrix by column vector -> column vector operations

FloatComplexColumnVector
operator * (const FloatMatrix& m, const FloatComplexColumnVector& a)
{
  FloatComplexMatrix tmp (m);
  return tmp * a;
}

// diagonal matrix by column vector -> column vector operations

FloatComplexColumnVector
operator * (const FloatDiagMatrix& m, const FloatComplexColumnVector& a)
{
  octave_idx_type nr = m.rows ();
  octave_idx_type nc = m.cols ();

  octave_idx_type a_len = a.length ();

  if (nc != a_len)
    {
      gripe_nonconformant ("operator *", nr, nc, a_len, 1);
      return FloatComplexColumnVector ();
    }

  if (nc == 0 || nr == 0)
    return FloatComplexColumnVector (0);

  FloatComplexColumnVector result (nr);

  for (octave_idx_type i = 0; i < a_len; i++)
    result.elem (i) = a.elem (i) * m.elem (i, i);

  for (octave_idx_type i = a_len; i < nr; i++)
    result.elem (i) = 0.0;

  return result;
}

FloatComplexColumnVector
operator * (const FloatComplexDiagMatrix& m, const FloatColumnVector& a)
{
  octave_idx_type nr = m.rows ();
  octave_idx_type nc = m.cols ();

  octave_idx_type a_len = a.length ();

  if (nc != a_len)
    {
      gripe_nonconformant ("operator *", nr, nc, a_len, 1);
      return FloatComplexColumnVector ();
    }

  if (nc == 0 || nr == 0)
    return FloatComplexColumnVector (0);

  FloatComplexColumnVector result (nr);

  for (octave_idx_type i = 0; i < a_len; i++)
    result.elem (i) = a.elem (i) * m.elem (i, i);

  for (octave_idx_type i = a_len; i < nr; i++)
    result.elem (i) = 0.0;

  return result;
}

FloatComplexColumnVector
operator * (const FloatComplexDiagMatrix& m, const FloatComplexColumnVector& a)
{
  octave_idx_type nr = m.rows ();
  octave_idx_type nc = m.cols ();

  octave_idx_type a_len = a.length ();

  if (nc != a_len)
    {
      gripe_nonconformant ("operator *", nr, nc, a_len, 1);
      return FloatComplexColumnVector ();
    }

  if (nc == 0 || nr == 0)
    return FloatComplexColumnVector (0);

  FloatComplexColumnVector result (nr);

  for (octave_idx_type i = 0; i < a_len; i++)
    result.elem (i) = a.elem (i) * m.elem (i, i);

  for (octave_idx_type i = a_len; i < nr; i++)
    result.elem (i) = 0.0;

  return result;
}

// other operations

FloatComplex
FloatComplexColumnVector::min (void) const
{
  octave_idx_type len = length ();
  if (len == 0)
    return 0.0;

  FloatComplex res = elem (0);
  float absres = std::abs (res);

  for (octave_idx_type i = 1; i < len; i++)
    if (std::abs (elem (i)) < absres)
      {
        res = elem (i);
        absres = std::abs (res);
      }

  return res;
}

FloatComplex
FloatComplexColumnVector::max (void) const
{
  octave_idx_type len = length ();
  if (len == 0)
    return 0.0;

  FloatComplex res = elem (0);
  float absres = std::abs (res);

  for (octave_idx_type i = 1; i < len; i++)
    if (std::abs (elem (i)) > absres)
      {
        res = elem (i);
        absres = std::abs (res);
      }

  return res;
}

// i/o

std::ostream&
operator << (std::ostream& os, const FloatComplexColumnVector& a)
{
//  int field_width = os.precision () + 7;
  for (octave_idx_type i = 0; i < a.length (); i++)
    os << /* setw (field_width) << */ a.elem (i) << "\n";
  return os;
}

std::istream&
operator >> (std::istream& is, FloatComplexColumnVector& a)
{
  octave_idx_type len = a.length();

  if (len > 0)
    {
      float tmp;
      for (octave_idx_type i = 0; i < len; i++)
        {
          is >> tmp;
          if (is)
            a.elem (i) = tmp;
          else
            break;
        }
    }
  return is;
}