view doc/interpreter/control.texi @ 2670:18192eea4973

[project @ 1997-02-13 18:29:53 by jwe]
author jwe
date Thu, 13 Feb 1997 18:34:06 +0000
parents e7908588548a
children 8c7955a8d49f
line wrap: on
line source

@c Copyright (C) 1996, 1997 John W. Eaton
@c This is part of the Octave manual.
@c For copying conditions, see the file gpl.texi.

@node Control Theory, Signal Processing, Polynomial Manipulations, Top
@chapter Control Theory

@deftypefn {Function File} {} abcddim (@var{a}, @var{b}, @var{c}, @var{d})
Check for compatibility of the dimensions of the matrices defining
the linear system [A, B, C, D] corresponding to
@iftex
@tex
$$
 {dx\over dt} = A x + B u
$$
$$
 y = C x + D u
$$
@end tex
@end iftex
@ifinfo

@example
dx/dt = a x + b u
y = c x + d u
@end example

@end ifinfo
or a similar discrete-time system.

If the matrices are compatibly dimensioned, then @code{abcddim} returns
@var{n} = number of system states, @var{m} = number of system inputs,
and @var{p} = number of system outputs.  Otherwise @code{abcddim}
returns @var{n} = @var{m} = @var{p} = @minus{}1.
@end deftypefn

@deftypefn {Function File} {} are (@var{a}, @var{b}, @var{c}, @var{opt})

Returns the solution, @var{x}, of the algebraic Riccati equation

@example
a' x + x a - x b x + c = 0
@end example

@noindent
for identically dimensioned square matrices @var{a}, @var{b}, @var{c}.
If @var{b} (@var{c}) is not square, then the function attempts to use
@code{@var{b}*@var{b}'} (@code{@var{c}'*@var{c}}) instead.

Solution method: apply Laub's Schur method (IEEE Transactions on
Automatic Control, 1979) to the appropriate Hamiltonian matrix.

@var{opt} is an option passed to the eigenvalue balancing routine.
Default is @code{"B"}.
@end deftypefn

@deftypefn {Function File} {} c2d (@var{a}, @var{b}, @var{t})
Converts the continuous time system described by:
@iftex
@tex
$$
 {dx\over dt} = A x + B u
$$
@end tex
@end iftex
@ifinfo

@example
dx/dt = a x + b u
@end example

@end ifinfo
into a discrete time equivalent model
@iftex
@tex
$$
 x_{k+1} = A_d x_k + B_d u_k
$$
@end tex
@end iftex
@ifinfo

@example
x[k+1] = Ad x[k] + Bd u[k]
@end example
@end ifinfo

@noindent
via the matrix exponential assuming a zero-order hold on the input and
sample time @var{t}.
@end deftypefn

@deftypefn {Function File} {} dare (@var{a}, @var{b}, @var{c}, @var{r}, @var{opt})

Returns the solution, @var{x} of the discrete-time algebraic Riccati
equation

@example
a' x a - x + a' x b (r + b' x b)^(-1) b' x a + c = 0
@end example

@noindent
for matrices with dimensions:

@example
@var{a}: @var{n} by @var{n}
@var{b}: @var{n} by @var{m}
@var{c}: @var{n} by @var{n}, symmetric positive semidefinite
@var{r}: @var{m} by @var{m}, symmetric positive definite (invertible)
@end example

If @var{c} is not square, then the function attempts to use
@code{@var{c}'*@var{c}} instead.

Solution method: Laub's Schur method (IEEE Transactions on Automatic
Control, 1979) is applied to the appropriate symplectic matrix.

See also: Ran and Rodman, @cite{Stable Hermitian Solutions of Discrete
Algebraic Riccati Equations}, Mathematics of Control, Signals and 
Systems, Volume 5, Number 2 (1992).

@var{opt} is an option passed to the eigenvalue balancing routine.
The default is @code{"B"}.
@end deftypefn

@deftypefn {Function File} {} dgram (@var{a}, @var{b})
Returns the discrete controllability and observability gramian for the
discrete time system described by
@iftex
@tex
$$
 x_{k+1} = A x_k + B u_k
$$
$$
 y_k = C x_k + D u_k
$$
@end tex
@end iftex
@ifinfo

@example
x[k+1] = A x[k] + B u[k]
  y[k] = C x[k] + D u[k]
@end example
@end ifinfo

@code{dgram (@var{a}, @var{b})} returns the discrete controllability
gramian and @code{dgram (@var{a}', @var{c}')} returns the observability
gramian.
@end deftypefn

@deftypefn {Function File} {} dlqe (@var{a}, @var{g}, @var{c}, @var{sigw}, @var{sigv} [, @var{z}])
Linear quadratic estimator (Kalman filter) design for the discrete time
system
@iftex
@tex
$$
 x_{k+1} = A x_k + B u_k + G w_k
$$
$$
 y_k = C x_k + D u_k + w_k
$$
@end tex
@end iftex
@ifinfo

@example
x[k+1] = A x[k] + B u[k] + G w[k]
  y[k] = C x[k] + D u[k] + w[k]
@end example

@end ifinfo
where @var{w}, @var{v} are zero-mean gaussian noise processes with
respective intensities @code{@var{sigw} = cov (@var{w}, @var{w})} and
@code{@var{sigv} = cov (@var{v}, @var{v})}.

If specified, @var{z} is @code{cov (@var{w}, @var{v})}.  Otherwise
@code{cov (@var{w}, @var{v}) = 0}.

The observer structure is
@iftex
@tex
$$
 z_{k+1} = A z_k + B u_k + k(y_k - C z_k - D u_k)
$$
@end tex
@end iftex
@ifinfo

@example
z[k+1] = A z[k] + B u[k] + k(y[k] - C z[k] - D u[k])
@end example
@end ifinfo

@noindent
Returns:

@var{l} is the observer gain, @code{(A - A L C)} is stable.

@var{m} is the Ricatti equation solution.

@var{p} is the estimate error covariance after the measurement update.

@var{e} are the closed loop poles of @code{(A - A L C)}.
@end deftypefn

@deftypefn {Function File} {} dlqr (@var{a}, @var{b}, @var{q}, @var{r} [, @var{z}])
Linear quadratic regulator design for the discrete time system
@iftex
@tex
$$
 x_{k+1} = A x_k + B u_k
$$
@end tex
@end iftex
@ifinfo

@example
x[k+1] = A x[k] + B u[k]
@end example

@end ifinfo
to minimize the cost functional

@example
J = Sum [ x' Q x + u' R u ],              Z omitted
@end example

@noindent
or

@example
J = Sum [ x' Q x + u' R u +2 x' Z u ],    Z included
@end example

@noindent
Returns:

@var{k} is the state feedback gain, @code{(A - B K)} is stable.

@var{p} is the solution of algebraic Riccati equation.

@var{e} are the closed loop poles of @var{(A - B K)}.
@end deftypefn

@deftypefn {Function File} {} dlyap (@var{a}, @var{b})
Solve the discrete-time Lyapunov equation

@example
a x a' - x + b = 0
@end example

@noindent
for square matrices @var{a}, @var{b}.  If @var{b} is not square, then the
function attempts to solve either

@example
a x a' - x + b b' = 0
@end example

@noindent
or

@example
a' x a - x + b' b = 0
@end example

@noindent
whichever is appropriate.

Uses Schur decomposition method as in Kitagawa, International Journal of
Control (1977); column-by-column solution method as suggested in
Hammarling, IMA Journal of Numerical Analysis, (1982).
@end deftypefn

@deftypefn {Function File} {} is_controllable (@var{a}, @var{b}, @var{tol})

If the pair (a, b) is controllable, then return value 1.
Otherwise, returns a value of 0.

@var{tol} is a roundoff parameter, set to @code{2*eps} if omitted.

Currently just constructs the controllability matrix and checks rank.
A better method is as follows (Boley and Golub, Systems and Control
Letters, 1984):  Controllability is determined by applying Arnoldi
iteration with complete re-orthogonalization to obtain an orthogonal
basis of the Krylov subspace
@iftex
@tex
$$
 {\rm span} \left(\left[b~ab~\ldots~a^{n-1}b\right]\right)
$$
@end tex
@end iftex
@ifinfo

@example
                      n-1
 span ([b, a*b, ..., a^   *b]).
@end example
@end ifinfo
@end deftypefn

@deftypefn {Function File} {} is_observable (@var{a}, @var{c}, @var{tol})

Returns 1 if the pair @code{(a, c)} is observable.
Otherwise, returns a value of 0.
@end deftypefn

@deftypefn {Function File} {} lqe (@var{a}, @var{g}, @var{c}, @var{sigw}, @var{sigv}, @var{z})

@example
[k, p, e] = lqe (a, g, c, sigw, sigv, z)
@end example

Linear quadratic estimator (Kalman filter) design for the continuous
time system
@iftex
@tex
$$
 {dx\over dt} = A x + B u
$$
$$
 y = C x + D u
$$
@end tex
@end iftex
@ifinfo

@example
dx
-- = a x + b u
dt

y = c x + d u
@end example

@end ifinfo
where @var{w}, @var{v} are zero-mean gaussian noise processes with
respective intensities

@example
sigw = cov (w, w)
sigv = cov (v, v)
@end example

@noindent
@var{z} (if specified) is the cross-covariance
@code{cov (@var{w}, @var{v})}; the default value is
@code{cov (@var{w}, @var{v}) = 0}. 

Observer structure is @code{dz/dt = A z + B u + k (y - C z - D u)}

returns:

@var{k} is observer gain:  @code{(A - K C)} is stable.

@var{p} is solution of algebraic Riccati equation.

@var{e} is the vector of closed loop poles of @code{(A - K C)}.
@end deftypefn

@deftypefn {Function File} {} lqr (@var{a}, @var{b}, @var{q}, @var{r}, @var{z})
@deftypefnx {Function File} {[@var{k}, @var{p}, @var{e}] =} lqr (@var{a}, @var{b}, @var{q}, @var{r}, @var{z})
Linear quadratic regulator design for the continuous time system
@iftex
@tex
$$
 {dx\over dt} = A x + B u
$$
@end tex
@end iftex
@ifinfo

@example
dx
-- = A x + B u
dt
@end example

@end ifinfo
to minimize the cost functional
@iftex
@tex
$$
 J = \int_0^\infty x' Q x + u' R u
$$
@end tex
@end iftex
@ifinfo

@example
      infinity
      /
  J = |  x' Q x + u' R u
     /
    t=0
@end example
@end ifinfo

@noindent
@var{z} omitted or
@iftex
@tex
$$
 J = \int_0^\infty x' Q x + u' R u + 2 x' Z u
$$
@end tex
@end iftex
@ifinfo

@example
      infinity
      /
  J = |  x' Q x + u' R u + 2 x' Z u
     /
    t=0
@end example

@end ifinfo
@var{z} included

@noindent
Returns:

@var{k} is state feedback gain:  @code{(A - B K)} is stable.

@var{p} is the stabilizing solution of appropriate algebraic Riccati
equation.

@var{e} is the vector of the closed loop poles of @code{(A - B K)}.
@end deftypefn

@deftypefn {Function File} {} lyap (@var{a}, @var{b}, @var{c})
Solve the Lyapunov (or Sylvester) equation via the Bartels-Stewart
algorithm (Communications of the ACM, 1972).

If @code{(a, b, c)} are specified, then @code{lyap} returns the solution
of the  Sylvester equation

@example
a x + x b + c = 0
@end example

If only @code{(a, b)} are specified, then @code{lyap} returns the
solution of the Lyapunov equation

@example
a' x + x a + b = 0
@end example

If @var{b} is not square, then @code{lyap} returns the solution of either

@example
a' x + x a + b' b = 0
@end example

@noindent
or

@example
a x + x a' + b b' = 0
@end example

@noindent
whichever is appropriate.

Solves by using the Bartels-Stewart algorithm (1972).
@end deftypefn

@deftypefn {Function File} {} tzero (@var{a}, @var{b}, @var{c}, @var{d}, @var{bal})
Compute the transmission zeros of [A, B, C, D].

@var{bal} = balancing option (see balance); default is @code{"B"}.

Needs to incorporate @code{mvzero} algorithm to isolate finite zeros;
see Hodel, @cite{Computation of System Zeros with Balancing}, Linear
Algebra and its Applications, July 1993.
@end deftypefn