view libinterp/octave-value/ov-float.cc @ 19895:19755f4fc851

maint: Cleanup C++ code to follow Octave coding conventions. Try to wrap long lines to < 80 characters. Use GNU style and don't indent first brace of function definition. "case" statement is aligned flush left with brace of switch stmt. Remove trailing '\' line continuation from the end of #define macros. Use 2 spaces for indent. * files-dock-widget.cc, history-dock-widget.cc, main-window.cc, octave-cmd.cc, octave-dock-widget.cc, octave-gui.cc, resource-manager.cc, settings-dialog.cc, shortcut-manager.cc, welcome-wizard.cc, workspace-view.cc, cellfun.cc, data.cc, debug.cc, debug.h, dirfns.cc, error.h, file-io.cc, gl-render.cc, gl-render.h, gl2ps-renderer.h, graphics.cc, graphics.in.h, help.cc, input.cc, load-path.cc, load-path.h, lookup.cc, lu.cc, oct-stream.cc, octave-default-image.h, ordschur.cc, pr-output.cc, qz.cc, strfns.cc, symtab.cc, symtab.h, sysdep.cc, variables.cc, zfstream.h, __fltk_uigetfile__.cc, __init_fltk__.cc, __magick_read__.cc, __osmesa_print__.cc, audiodevinfo.cc, ov-classdef.cc, ov-classdef.h, ov-fcn.h, ov-float.cc, ov-flt-complex.cc, ov-java.cc, ov-range.cc, ov-re-mat.cc, ov-usr-fcn.h, ov.cc, op-int.h, options-usage.h, pt-eval.cc, Array-C.cc, Array-fC.cc, Array.cc, Array.h, PermMatrix.cc, Sparse.cc, chMatrix.h, dSparse.cc, dim-vector.h, bsxfun-decl.h, bsxfun-defs.cc, oct-norm.cc, Sparse-op-defs.h, oct-inttypes.cc, oct-inttypes.h, main.in.cc, mkoctfile.in.cc: Cleanup C++ code to follow Octave coding conventions.
author Rik <rik@octave.org>
date Wed, 25 Feb 2015 11:55:49 -0800
parents 4197fc428c7d
children 09ed6f7538dd
line wrap: on
line source

/*

Copyright (C) 1996-2015 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <iostream>

#include "data-conv.h"
#include "mach-info.h"
#include "lo-specfun.h"
#include "lo-mappers.h"

#include "defun.h"
#include "gripes.h"
#include "mxarray.h"
#include "oct-obj.h"
#include "oct-stream.h"
#include "ov-scalar.h"
#include "ov-float.h"
#include "ov-base.h"
#include "ov-base-scalar.h"
#include "ov-base-scalar.cc"
#include "ov-flt-re-mat.h"
#include "ov-typeinfo.h"
#include "pr-output.h"
#include "xdiv.h"
#include "xpow.h"
#include "ops.h"

#include "ls-oct-ascii.h"
#include "ls-hdf5.h"

template class octave_base_scalar<float>;


DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_float_scalar, "float scalar",
                                     "single");

octave_value
octave_float_scalar::do_index_op (const octave_value_list& idx, bool resize_ok)
{
  // FIXME: this doesn't solve the problem of
  //
  //   a = 1; a([1,1], [1,1], [1,1])
  //
  // and similar constructions.  Hmm...

  // FIXME: using this constructor avoids narrowing the
  // 1x1 matrix back to a scalar value.  Need a better solution
  // to this problem.

  octave_value tmp (new octave_float_matrix (float_matrix_value ()));

  return tmp.do_index_op (idx, resize_ok);
}

octave_value
octave_float_scalar::resize (const dim_vector& dv, bool fill) const
{
  if (fill)
    {
      FloatNDArray retval (dv, 0);

      if (dv.numel ())
        retval(0) = scalar;

      return retval;
    }
  else
    {
      FloatNDArray retval (dv);

      if (dv.numel ())
        retval(0) = scalar;

      return retval;
    }
}

octave_value
octave_float_scalar::diag (octave_idx_type m, octave_idx_type n) const
{
  return FloatDiagMatrix (Array<float> (dim_vector (1, 1), scalar), m, n);
}

octave_value
octave_float_scalar::convert_to_str_internal (bool, bool, char type) const
{
  octave_value retval;

  if (xisnan (scalar))
    gripe_nan_to_character_conversion ();
  else
    {
      int ival = NINT (scalar);

      if (ival < 0 || ival > std::numeric_limits<unsigned char>::max ())
        {
          // FIXME: is there something better we could do?

          ival = 0;

          ::warning ("range error for conversion to character value");
        }

      retval = octave_value (std::string (1, static_cast<char> (ival)), type);
    }

  return retval;
}

bool
octave_float_scalar::save_ascii (std::ostream& os)
{
  float d = float_value ();

  octave_write_float (os, d);

  os << "\n";

  return true;
}

bool
octave_float_scalar::load_ascii (std::istream& is)
{
  scalar = octave_read_value<float> (is);
  if (!is)
    {
      error ("load: failed to load scalar constant");
      return false;
    }

  return true;
}

bool
octave_float_scalar::save_binary (std::ostream& os, bool& /* save_as_floats */)
{
  char tmp = LS_FLOAT;
  os.write (reinterpret_cast<char *> (&tmp), 1);
  float dtmp = float_value ();
  os.write (reinterpret_cast<char *> (&dtmp), 4);

  return true;
}

bool
octave_float_scalar::load_binary (std::istream& is, bool swap,
                                  oct_mach_info::float_format fmt)
{
  char tmp;
  if (! is.read (reinterpret_cast<char *> (&tmp), 1))
    return false;

  float dtmp;
  read_floats (is, &dtmp, static_cast<save_type> (tmp), 1, swap, fmt);
  if (error_state || ! is)
    return false;

  scalar = dtmp;
  return true;
}

#if defined (HAVE_HDF5)

bool
octave_float_scalar::save_hdf5 (hid_t loc_id, const char *name,
                                bool /* save_as_floats */)
{
  hsize_t dimens[3];
  hid_t space_hid, data_hid;
  space_hid = data_hid = -1;
  bool retval = true;

  space_hid = H5Screate_simple (0, dimens, 0);
  if (space_hid < 0) return false;
#if HAVE_HDF5_18
  data_hid = H5Dcreate (loc_id, name, H5T_NATIVE_FLOAT, space_hid,
                        H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
#else
  data_hid = H5Dcreate (loc_id, name, H5T_NATIVE_FLOAT, space_hid,
                        H5P_DEFAULT);
#endif
  if (data_hid < 0)
    {
      H5Sclose (space_hid);
      return false;
    }

  float tmp = float_value ();
  retval = H5Dwrite (data_hid, H5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL,
                     H5P_DEFAULT, &tmp) >= 0;

  H5Dclose (data_hid);
  H5Sclose (space_hid);

  return retval;
}

bool
octave_float_scalar::load_hdf5 (hid_t loc_id, const char *name)
{
#if HAVE_HDF5_18
  hid_t data_hid = H5Dopen (loc_id, name, H5P_DEFAULT);
#else
  hid_t data_hid = H5Dopen (loc_id, name);
#endif
  hid_t space_id = H5Dget_space (data_hid);

  hsize_t rank = H5Sget_simple_extent_ndims (space_id);

  if (rank != 0)
    {
      H5Dclose (data_hid);
      return false;
    }

  float dtmp;
  if (H5Dread (data_hid, H5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL,
               H5P_DEFAULT, &dtmp) < 0)
    {
      H5Dclose (data_hid);
      return false;
    }

  scalar = dtmp;

  H5Dclose (data_hid);

  return true;
}

#endif

mxArray *
octave_float_scalar::as_mxArray (void) const
{
  mxArray *retval = new mxArray (mxSINGLE_CLASS, 1, 1, mxREAL);

  float *pr = static_cast<float *> (retval->get_data ());

  pr[0] = scalar;

  return retval;
}

octave_value
octave_float_scalar::map (unary_mapper_t umap) const
{
  switch (umap)
    {
    case umap_imag:
      return 0.0f;

    case umap_real:
    case umap_conj:
      return scalar;

#define SCALAR_MAPPER(UMAP, FCN) \
    case umap_ ## UMAP: \
      return octave_value (FCN (scalar))

      SCALAR_MAPPER (abs, ::fabsf);
      SCALAR_MAPPER (acos, rc_acos);
      SCALAR_MAPPER (acosh, rc_acosh);
      SCALAR_MAPPER (angle, ::arg);
      SCALAR_MAPPER (arg, ::arg);
      SCALAR_MAPPER (asin, rc_asin);
      SCALAR_MAPPER (asinh, ::asinhf);
      SCALAR_MAPPER (atan, ::atanf);
      SCALAR_MAPPER (atanh, rc_atanh);
      SCALAR_MAPPER (erf, ::erff);
      SCALAR_MAPPER (erfinv, ::erfinv);
      SCALAR_MAPPER (erfcinv, ::erfcinv);
      SCALAR_MAPPER (erfc, ::erfcf);
      SCALAR_MAPPER (erfcx, ::erfcx);
      SCALAR_MAPPER (erfi, ::erfi);
      SCALAR_MAPPER (dawson, ::dawson);
      SCALAR_MAPPER (gamma, xgamma);
      SCALAR_MAPPER (lgamma, rc_lgamma);
      SCALAR_MAPPER (cbrt, ::cbrtf);
      SCALAR_MAPPER (ceil, ::ceilf);
      SCALAR_MAPPER (cos, ::cosf);
      SCALAR_MAPPER (cosh, ::coshf);
      SCALAR_MAPPER (exp, ::expf);
      SCALAR_MAPPER (expm1, ::expm1f);
      SCALAR_MAPPER (fix, ::fix);
      SCALAR_MAPPER (floor, gnulib::floorf);
      SCALAR_MAPPER (log, rc_log);
      SCALAR_MAPPER (log2, rc_log2);
      SCALAR_MAPPER (log10, rc_log10);
      SCALAR_MAPPER (log1p, rc_log1p);
      SCALAR_MAPPER (round, xround);
      SCALAR_MAPPER (roundb, xroundb);
      SCALAR_MAPPER (signum, ::signum);
      SCALAR_MAPPER (sin, ::sinf);
      SCALAR_MAPPER (sinh, ::sinhf);
      SCALAR_MAPPER (sqrt, rc_sqrt);
      SCALAR_MAPPER (tan, ::tanf);
      SCALAR_MAPPER (tanh, ::tanhf);
      SCALAR_MAPPER (finite, xfinite);
      SCALAR_MAPPER (isinf, xisinf);
      SCALAR_MAPPER (isna, octave_is_NA);
      SCALAR_MAPPER (isnan, xisnan);
      SCALAR_MAPPER (xsignbit, xsignbit);

    // Special cases for Matlab compatibility.
    case umap_xtolower:
    case umap_xtoupper:
      return scalar;

    case umap_xisalnum:
    case umap_xisalpha:
    case umap_xisascii:
    case umap_xiscntrl:
    case umap_xisdigit:
    case umap_xisgraph:
    case umap_xislower:
    case umap_xisprint:
    case umap_xispunct:
    case umap_xisspace:
    case umap_xisupper:
    case umap_xisxdigit:
    case umap_xtoascii:
      {
        octave_value str_conv = convert_to_str (true, true);
        return error_state ? octave_value () : str_conv.map (umap);
      }

    default:
      return octave_base_value::map (umap);
    }
}

bool
octave_float_scalar::fast_elem_insert_self (void *where,
                                            builtin_type_t btyp) const
{

  // Support inline real->complex conversion.
  if (btyp == btyp_float)
    {
      *(reinterpret_cast<float *>(where)) = scalar;
      return true;
    }
  else if (btyp == btyp_float_complex)
    {
      *(reinterpret_cast<FloatComplex *>(where)) = scalar;
      return true;
    }
  else
    return false;
}