view liboctave/util/oct-inttypes.cc @ 19895:19755f4fc851

maint: Cleanup C++ code to follow Octave coding conventions. Try to wrap long lines to < 80 characters. Use GNU style and don't indent first brace of function definition. "case" statement is aligned flush left with brace of switch stmt. Remove trailing '\' line continuation from the end of #define macros. Use 2 spaces for indent. * files-dock-widget.cc, history-dock-widget.cc, main-window.cc, octave-cmd.cc, octave-dock-widget.cc, octave-gui.cc, resource-manager.cc, settings-dialog.cc, shortcut-manager.cc, welcome-wizard.cc, workspace-view.cc, cellfun.cc, data.cc, debug.cc, debug.h, dirfns.cc, error.h, file-io.cc, gl-render.cc, gl-render.h, gl2ps-renderer.h, graphics.cc, graphics.in.h, help.cc, input.cc, load-path.cc, load-path.h, lookup.cc, lu.cc, oct-stream.cc, octave-default-image.h, ordschur.cc, pr-output.cc, qz.cc, strfns.cc, symtab.cc, symtab.h, sysdep.cc, variables.cc, zfstream.h, __fltk_uigetfile__.cc, __init_fltk__.cc, __magick_read__.cc, __osmesa_print__.cc, audiodevinfo.cc, ov-classdef.cc, ov-classdef.h, ov-fcn.h, ov-float.cc, ov-flt-complex.cc, ov-java.cc, ov-range.cc, ov-re-mat.cc, ov-usr-fcn.h, ov.cc, op-int.h, options-usage.h, pt-eval.cc, Array-C.cc, Array-fC.cc, Array.cc, Array.h, PermMatrix.cc, Sparse.cc, chMatrix.h, dSparse.cc, dim-vector.h, bsxfun-decl.h, bsxfun-defs.cc, oct-norm.cc, Sparse-op-defs.h, oct-inttypes.cc, oct-inttypes.h, main.in.cc, mkoctfile.in.cc: Cleanup C++ code to follow Octave coding conventions.
author Rik <rik@octave.org>
date Wed, 25 Feb 2015 11:55:49 -0800
parents 4197fc428c7d
children
line wrap: on
line source

/*

Copyright (C) 2004-2015 John W. Eaton
Copyright (C) 2008-2009 Jaroslav Hajek

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <fpucw.h>

#include "lo-error.h"

#include "oct-inttypes.h"

template<class T>
const octave_int<T> octave_int<T>::zero (static_cast<T> (0));

template<class T>
const octave_int<T> octave_int<T>::one (static_cast<T> (1));

// define type names.
#define DECLARE_OCTAVE_INT_TYPENAME(TYPE, TYPENAME) \
  template <> \
  OCTAVE_API const char * \
  octave_int<TYPE>::type_name () { return TYPENAME; }

DECLARE_OCTAVE_INT_TYPENAME (int8_t, "int8")
DECLARE_OCTAVE_INT_TYPENAME (int16_t, "int16")
DECLARE_OCTAVE_INT_TYPENAME (int32_t, "int32")
DECLARE_OCTAVE_INT_TYPENAME (int64_t, "int64")
DECLARE_OCTAVE_INT_TYPENAME (uint8_t, "uint8")
DECLARE_OCTAVE_INT_TYPENAME (uint16_t, "uint16")
DECLARE_OCTAVE_INT_TYPENAME (uint32_t, "uint32")
DECLARE_OCTAVE_INT_TYPENAME (uint64_t, "uint64")

#ifdef OCTAVE_INT_USE_LONG_DOUBLE

#ifdef OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED

#define DEFINE_OCTAVE_LONG_DOUBLE_CMP_OP_TEMPLATES(T) \
  template <class xop> \
  bool \
  octave_int_cmp_op::external_mop (double x, T y) \
  { \
     DECL_LONG_DOUBLE_ROUNDING \
   \
     BEGIN_LONG_DOUBLE_ROUNDING (); \
   \
     bool retval = xop::op (static_cast<long double> (x), \
                            static_cast<long double> (y)); \
   \
     END_LONG_DOUBLE_ROUNDING (); \
   \
     return retval; \
  } \
   \
  template <class xop> \
  bool \
  octave_int_cmp_op::external_mop (T x, double y) \
  { \
     DECL_LONG_DOUBLE_ROUNDING \
   \
     BEGIN_LONG_DOUBLE_ROUNDING (); \
   \
     bool retval = xop::op (static_cast<long double> (x), \
                            static_cast<long double> (y)); \
   \
     END_LONG_DOUBLE_ROUNDING (); \
   \
     return retval; \
  }

DEFINE_OCTAVE_LONG_DOUBLE_CMP_OP_TEMPLATES (int64_t)
DEFINE_OCTAVE_LONG_DOUBLE_CMP_OP_TEMPLATES (uint64_t)

#define INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP(OP, T) \
  template OCTAVE_API bool \
  octave_int_cmp_op::external_mop<octave_int_cmp_op::OP> (double, T); \
  template OCTAVE_API bool \
  octave_int_cmp_op::external_mop<octave_int_cmp_op::OP> (T, double)

#define INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OPS(T) \
  INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP (lt, T); \
  INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP (le, T); \
  INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP (gt, T); \
  INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP (ge, T); \
  INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP (eq, T); \
  INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP (ne, T)

INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OPS (int64_t);
INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OPS (uint64_t);

uint64_t
octave_external_uint64_uint64_mul (uint64_t x, uint64_t y)
{
  DECL_LONG_DOUBLE_ROUNDING

  BEGIN_LONG_DOUBLE_ROUNDING ();

  uint64_t retval = octave_int_arith_base<uint64_t, false>::mul_internal (x, y);

  END_LONG_DOUBLE_ROUNDING ();

  return retval;
}

int64_t
octave_external_int64_int64_mul (int64_t x, int64_t y)
{
  DECL_LONG_DOUBLE_ROUNDING

  BEGIN_LONG_DOUBLE_ROUNDING ();

  int64_t retval = octave_int_arith_base<int64_t, true>::mul_internal (x, y);

  END_LONG_DOUBLE_ROUNDING ();

  return retval;
}

// Note that if we return long double it is apparently possible for
// truncation to happen at the point of storing the result in retval,
// which can happen after we end long double rounding.  Attempt to avoid
// that problem by storing the full precision temporary value in the
// integer value before we end the long double rounding mode.
// Similarly, the conversion from the 64-bit integer type to long double
// must also occur in long double rounding mode.

#define OCTAVE_LONG_DOUBLE_OP(T, OP, NAME) \
  T \
  external_double_ ## T ## _ ## NAME (double x, T y) \
  { \
    DECL_LONG_DOUBLE_ROUNDING \
 \
    BEGIN_LONG_DOUBLE_ROUNDING (); \
 \
    T retval = T (x OP static_cast<long double> (y.value ())); \
 \
    END_LONG_DOUBLE_ROUNDING (); \
 \
    return retval; \
  } \
 \
  T \
  external_ ## T ## _double_ ## NAME (T x, double y) \
  { \
    DECL_LONG_DOUBLE_ROUNDING \
 \
    BEGIN_LONG_DOUBLE_ROUNDING (); \
 \
    T retval = T (static_cast<long double> (x.value ()) OP y); \
 \
    END_LONG_DOUBLE_ROUNDING (); \
 \
    return retval; \
  }

#define OCTAVE_LONG_DOUBLE_OPS(T) \
  OCTAVE_LONG_DOUBLE_OP (T, +, add); \
  OCTAVE_LONG_DOUBLE_OP (T, -, sub); \
  OCTAVE_LONG_DOUBLE_OP (T, *, mul); \
  OCTAVE_LONG_DOUBLE_OP (T, /, div)

OCTAVE_LONG_DOUBLE_OPS(octave_int64);
OCTAVE_LONG_DOUBLE_OPS(octave_uint64);

#endif

#else

// Define comparison operators

template <class xop>
bool
octave_int_cmp_op::emulate_mop (uint64_t x, double y)
{
  static const double xxup = std::numeric_limits<uint64_t>::max ();
  // This converts to the nearest double. Unless there's an equality, the
  // result is clear.
  double xx = x;
  if (xx != y)
    return xop::op (xx, y);
  else
    {
      // If equality occured we compare as integers.
      if (xx == xxup)
        return xop::gtval;
      else
        return xop::op (x, static_cast<uint64_t> (xx));
    }
}

template <class xop>
bool
octave_int_cmp_op::emulate_mop (int64_t x, double y)
{
  static const double xxup = std::numeric_limits<int64_t>::max ();
  static const double xxlo = std::numeric_limits<int64_t>::min ();
  // This converts to the nearest double. Unless there's an equality, the
  // result is clear.
  double xx = x;
  if (xx != y)
    return xop::op (xx, y);
  else
    {
      // If equality occured we compare as integers.
      if (xx == xxup)
        return xop::gtval;
      else if (xx == xxlo)
        return xop::ltval;
      else
        return xop::op (x, static_cast<int64_t> (xx));
    }

}

// We define double-int operations by reverting the operator

// A trait class reverting the operator
template <class xop>
class rev_op
{
public:
  typedef xop op;
};

#define DEFINE_REVERTED_OPERATOR(OP1,OP2) \
  template <> \
  class rev_op<octave_int_cmp_op::OP1> \
  { \
  public: \
    typedef octave_int_cmp_op::OP2 op; \
  }

DEFINE_REVERTED_OPERATOR(lt,gt);
DEFINE_REVERTED_OPERATOR(gt,lt);
DEFINE_REVERTED_OPERATOR(le,ge);
DEFINE_REVERTED_OPERATOR(ge,le);

template <class xop>
bool
octave_int_cmp_op::emulate_mop (double x, uint64_t y)
{
  typedef typename rev_op<xop>::op rop;
  return mop<rop> (y, x);
}

template <class xop>
bool
octave_int_cmp_op::emulate_mop (double x, int64_t y)
{
  typedef typename rev_op<xop>::op rop;
  return mop<rop> (y, x);
}


// Define handlers for int64 multiplication

template <>
uint64_t
octave_int_arith_base<uint64_t, false>::mul_internal (uint64_t x, uint64_t y)
{
  // Get upper words
  uint64_t ux = x >> 32;
  uint64_t uy = y >> 32;
  uint64_t res;
  if (ux)
    {
      if (uy)
        goto overflow;
      else
        {
          uint64_t ly = static_cast<uint32_t> (y);
          uint64_t uxly = ux*ly;
          if (uxly >> 32)
            goto overflow;
          uxly <<= 32; // never overflows
          uint64_t lx = static_cast<uint32_t> (x);
          uint64_t lxly = lx*ly;
          res = add (uxly, lxly);
        }
    }
  else if (uy)
    {
      uint64_t lx = static_cast<uint32_t> (x);
      uint64_t uylx = uy*lx;
      if (uylx >> 32)
        goto overflow;
      uylx <<= 32; // never overflows
      uint64_t ly = static_cast<uint32_t> (y);
      uint64_t lylx = ly*lx;
      res = add (uylx, lylx);
    }
  else
    {
      uint64_t lx = static_cast<uint32_t> (x);
      uint64_t ly = static_cast<uint32_t> (y);
      res = lx*ly;
    }

  return res;

overflow:
  return max_val ();
}

template <>
int64_t
octave_int_arith_base<int64_t, true>::mul_internal (int64_t x, int64_t y)
{
  // The signed case is far worse. The problem is that
  // even if neither integer fits into signed 32-bit range, the result may
  // still be OK. Uh oh.

  // Essentially, what we do is compute sign, multiply absolute values
  // (as above) and impose the sign.
  // FIXME: can we do something faster if we HAVE_FAST_INT_OPS?

  uint64_t usx = octave_int_abs (x);
  uint64_t usy = octave_int_abs (y);
  bool positive = (x < 0) == (y < 0);

  // Get upper words
  uint64_t ux = usx >> 32;
  uint64_t uy = usy >> 32;
  uint64_t res;
  if (ux)
    {
      if (uy)
        goto overflow;
      else
        {
          uint64_t ly = static_cast<uint32_t> (usy);
          uint64_t uxly = ux*ly;
          if (uxly >> 32)
            goto overflow;
          uxly <<= 32; // never overflows
          uint64_t lx = static_cast<uint32_t> (usx);
          uint64_t lxly = lx*ly;
          res = uxly + lxly;
          if (res < uxly)
            goto overflow;
        }
    }
  else if (uy)
    {
      uint64_t lx = static_cast<uint32_t> (usx);
      uint64_t uylx = uy*lx;
      if (uylx >> 32)
        goto overflow;
      uylx <<= 32; // never overflows
      uint64_t ly = static_cast<uint32_t> (usy);
      uint64_t lylx = ly*lx;
      res = uylx + lylx;
      if (res < uylx)
        goto overflow;
    }
  else
    {
      uint64_t lx = static_cast<uint32_t> (usx);
      uint64_t ly = static_cast<uint32_t> (usy);
      res = lx*ly;
    }

  if (positive)
    {
      if (res > static_cast<uint64_t> (max_val ()))
        {
          return max_val ();
        }
      else
        return static_cast<int64_t> (res);
    }
  else
    {
      if (res > static_cast<uint64_t> (-min_val ()))
        {
          return min_val ();
        }
      else
        return -static_cast<int64_t> (res);
    }


overflow:
  return positive ? max_val () : min_val ();

}

#define INT_DOUBLE_BINOP_DECL(OP,SUFFIX) \
  template <> \
  OCTAVE_API octave_ ## SUFFIX \
  operator OP (const octave_ ## SUFFIX & x, const double& y)

#define DOUBLE_INT_BINOP_DECL(OP,SUFFIX) \
  template <> \
  OCTAVE_API octave_ ## SUFFIX \
  operator OP (const double& x, const octave_ ## SUFFIX & y)

INT_DOUBLE_BINOP_DECL (+, uint64)
{
  return (y < 0) ? x - octave_uint64 (-y) : x + octave_uint64 (y);
}

DOUBLE_INT_BINOP_DECL (+, uint64)
{ return y + x; }

INT_DOUBLE_BINOP_DECL (+, int64)
{
  if (fabs (y) < static_cast<double> (octave_int64::max ()))
    return x + octave_int64 (y);
  else
    {
      // If the number is within the int64 range (the most common case,
      // probably), the above will work as expected. If not, it's more
      // complicated - as long as y is within _twice_ the signed range, the
      // result may still be an integer. An instance of such an operation is
      // 3*2**62 + (1+intmin ('int64')) that should yield int64 (2**62) + 1.  So
      // what we do is to try to convert y/2 and add it twice. Note that if y/2
      // overflows, the result must overflow as well, and that y/2 cannot be a
      // fractional number.
      octave_int64 y2 (y / 2);
      return (x + y2) + y2;
    }
}

DOUBLE_INT_BINOP_DECL (+, int64)
{
  return y + x;
}

INT_DOUBLE_BINOP_DECL (-, uint64)
{
  return x + (-y);
}

DOUBLE_INT_BINOP_DECL (-, uint64)
{
  if (x <= static_cast<double> (octave_uint64::max ()))
    return octave_uint64 (x) - y;
  else
    {
      // Again a trick to get the corner cases right. Things like
      // 3**2**63 - intmax ('uint64') should produce the correct result, i.e.
      // int64 (2**63) + 1.
      const double p2_64 = std::pow (2.0, 64);
      if (y.bool_value ())
        {
          const uint64_t p2_64my = (~y.value ()) + 1; // Equals 2**64 - y
          return octave_uint64 (x - p2_64) + octave_uint64 (p2_64my);
        }
      else
        return octave_uint64 (p2_64);
    }
}

INT_DOUBLE_BINOP_DECL (-, int64)
{
  return x + (-y);
}

DOUBLE_INT_BINOP_DECL (-, int64)
{
  static const bool twosc = (std::numeric_limits<int64_t>::min ()
                             < -std::numeric_limits<int64_t>::max ());
  // In case of symmetric integers (not two's complement), this will probably
  // be eliminated at compile time.
  if (twosc && y.value () == std::numeric_limits<int64_t>::min ())
    {
      return octave_int64 (x + std::pow (2.0, 63));
    }
  else
    return x + (-y);
}

// NOTE:
// Emulated mixed multiplications are tricky due to possible precision loss.
// Here, after sorting out common cases for speed, we follow the strategy
// of converting the double number into the form sign * 64-bit integer *
// 2**exponent, multiply the 64-bit integers to get a 128-bit number, split that
// number into 32-bit words and form 4 double-valued summands (none of which
// loses precision), then convert these into integers and sum them. Though it is
// not immediately obvious, this should work even w.r.t. rounding (none of the
// summands lose precision).

// Multiplies two unsigned 64-bit ints to get a 128-bit number represented
// as four 32-bit words.
static void
umul128 (uint64_t x, uint64_t y, uint32_t w[4])
{
  uint64_t lx = static_cast<uint32_t> (x);
  uint64_t ux = x >> 32;
  uint64_t ly = static_cast<uint32_t> (y);
  uint64_t uy = y >> 32;
  uint64_t a = lx * ly;
  w[0] = a; a >>= 32;
  uint64_t uxly = ux*ly;
  uint64_t uylx = uy*lx;
  a += static_cast<uint32_t> (uxly); uxly >>= 32;
  a += static_cast<uint32_t> (uylx); uylx >>= 32;
  w[1] = a; a >>= 32;
  uint64_t uxuy = ux * uy;
  a += uxly; a += uylx; a += uxuy;
  w[2] = a; a >>= 32;
  w[3] = a;
}

// Splits a double into bool sign, unsigned 64-bit mantissa and int exponent
static void
dblesplit (double x, bool& sign, uint64_t& mtis, int& exp)
{
  sign = x < 0; x = fabs (x);
  x = gnulib::frexp (x, &exp);
  exp -= 52;
  mtis = static_cast<uint64_t> (ldexp (x, 52));
}

// Gets a double number from a
// 32-bit unsigned integer mantissa, exponent, and sign.
static double
dbleget (bool sign, uint32_t mtis, int exp)
{
  double x = ldexp (static_cast<double> (mtis), exp);
  return sign ? -x : x;
}

INT_DOUBLE_BINOP_DECL (*, uint64)
{
  if (y >= 0 && y < octave_uint64::max () && y == xround (y))
    {
      return x * octave_uint64 (static_cast<uint64_t> (y));
    }
  else if (y == 0.5)
    {
      return x / octave_uint64 (static_cast<uint64_t> (2));
    }
  else if (y < 0 || xisnan (y) || xisinf (y))
    {
      return octave_uint64 (x.value () * y);
    }
  else
    {
      bool sign;
      uint64_t my;
      int e;
      dblesplit (y, sign, my, e);
      uint32_t w[4];
      umul128 (x.value (), my, w);
      octave_uint64 res = octave_uint64::zero;
      for (short i = 0; i < 4; i++)
        {
          res += octave_uint64 (dbleget (sign, w[i], e));
          e += 32;
        }
      return res;
    }
}

DOUBLE_INT_BINOP_DECL (*, uint64)
{ return y * x; }

INT_DOUBLE_BINOP_DECL (*, int64)
{
  if (fabs (y) < octave_int64::max () && y == xround (y))
    {
      return x * octave_int64 (static_cast<int64_t> (y));
    }
  else if (fabs (y) == 0.5)
    {
      return x / octave_int64 (static_cast<uint64_t> (4*y));
    }
  else if (xisnan (y) || xisinf (y))
    {
      return octave_int64 (x.value () * y);
    }
  else
    {
      bool sign;
      uint64_t my;
      int e;
      dblesplit (y, sign, my, e);
      uint32_t w[4];
      sign = (sign != (x.value () < 0));
      umul128 (octave_int_abs (x.value ()), my, w);
      octave_int64 res = octave_int64::zero;
      for (short i = 0; i < 4; i++)
        {
          res += octave_int64 (dbleget (sign, w[i], e));
          e += 32;
        }
      return res;
    }
}

DOUBLE_INT_BINOP_DECL (*, int64)
{ return y * x; }

DOUBLE_INT_BINOP_DECL (/, uint64)
{
  return octave_uint64 (x / static_cast<double> (y));
}

DOUBLE_INT_BINOP_DECL (/, int64)
{
  return octave_int64 (x / static_cast<double> (y));
}

INT_DOUBLE_BINOP_DECL (/, uint64)
{
  if (y >= 0 && y < octave_uint64::max () && y == xround (y))
    {
      return x / octave_uint64 (y);
    }
  else
    return x * (1.0/y);
}

INT_DOUBLE_BINOP_DECL (/, int64)
{
  if (fabs (y) < octave_int64::max () && y == xround (y))
    {
      return x / octave_int64 (y);
    }
  else
    return x * (1.0/y);
}

#define INSTANTIATE_INT64_DOUBLE_CMP_OP0(OP,T1,T2) \
  template OCTAVE_API bool \
  octave_int_cmp_op::emulate_mop<octave_int_cmp_op::OP> (T1 x, T2 y)

#define INSTANTIATE_INT64_DOUBLE_CMP_OP(OP) \
  INSTANTIATE_INT64_DOUBLE_CMP_OP0(OP, double, int64_t); \
  INSTANTIATE_INT64_DOUBLE_CMP_OP0(OP, double, uint64_t); \
  INSTANTIATE_INT64_DOUBLE_CMP_OP0(OP, int64_t, double); \
  INSTANTIATE_INT64_DOUBLE_CMP_OP0(OP, uint64_t, double)

INSTANTIATE_INT64_DOUBLE_CMP_OP(lt);
INSTANTIATE_INT64_DOUBLE_CMP_OP(le);
INSTANTIATE_INT64_DOUBLE_CMP_OP(gt);
INSTANTIATE_INT64_DOUBLE_CMP_OP(ge);
INSTANTIATE_INT64_DOUBLE_CMP_OP(eq);
INSTANTIATE_INT64_DOUBLE_CMP_OP(ne);

#endif

//template <class T>
//bool
//xisnan (const octave_int<T>&)
//{
//  return false;
//}

template <class T>
octave_int<T>
pow (const octave_int<T>& a, const octave_int<T>& b)
{
  octave_int<T> retval;

  octave_int<T> zero = static_cast<T> (0);
  octave_int<T> one = static_cast<T> (1);

  if (b == zero || a == one)
    retval = one;
  else if (b < zero)
    {
      if (a == -one)
        retval = (b.value () % 2) ? a : one;
      else
        retval = zero;
    }
  else
    {
      octave_int<T> a_val = a;
      T b_val = b; // no need to do saturation on b

      retval = a;

      b_val -= 1;

      while (b_val != 0)
        {
          if (b_val & 1)
            retval = retval * a_val;

          b_val = b_val >> 1;

          if (b_val)
            a_val = a_val * a_val;
        }
    }

  return retval;
}

template <class T>
octave_int<T>
pow (const double& a, const octave_int<T>& b)
{ return octave_int<T> (pow (a, b.double_value ())); }

template <class T>
octave_int<T>
pow (const octave_int<T>& a, const double& b)
{
  return ((b >= 0 && b < std::numeric_limits<T>::digits && b == xround (b))
          ? pow (a, octave_int<T> (static_cast<T> (b)))
          : octave_int<T> (pow (a.double_value (), b)));
}

template <class T>
octave_int<T>
pow (const float& a, const octave_int<T>& b)
{ return octave_int<T> (pow (a, b.float_value ())); }

template <class T>
octave_int<T>
pow (const octave_int<T>& a, const float& b)
{
  return ((b >= 0 && b < std::numeric_limits<T>::digits && b == xround (b))
          ? pow (a, octave_int<T> (static_cast<T> (b)))
          : octave_int<T> (pow (a.double_value (), static_cast<double> (b))));
}

// FIXME: Do we really need a differently named single-precision
//        function integer power function here instead of an overloaded
//        one?
template <class T>
octave_int<T>
powf (const float& a, const octave_int<T>& b)
{ return octave_int<T> (pow (a, b.float_value ())); }

template <class T>
octave_int<T>
powf (const octave_int<T>& a, const float& b)
{
  return ((b >= 0 && b < std::numeric_limits<T>::digits && b == xround (b))
          ? pow (a, octave_int<T> (static_cast<T> (b)))
          : octave_int<T> (pow (a.double_value (), static_cast<double> (b))));
}

#define INSTANTIATE_INTTYPE(T) \
  template class OCTAVE_API octave_int<T>; \
  template OCTAVE_API octave_int<T> pow (const octave_int<T>&, const octave_int<T>&); \
  template OCTAVE_API octave_int<T> pow (const double&, const octave_int<T>&); \
  template OCTAVE_API octave_int<T> pow (const octave_int<T>&, const double&); \
  template OCTAVE_API octave_int<T> pow (const float&, const octave_int<T>&);  \
  template OCTAVE_API octave_int<T> pow (const octave_int<T>&, const float&);  \
  template OCTAVE_API octave_int<T> powf (const float&, const octave_int<T>&); \
  template OCTAVE_API octave_int<T> powf (const octave_int<T>&, const float&); \
  template OCTAVE_API octave_int<T> \
  bitshift (const octave_int<T>&, int, const octave_int<T>&);

INSTANTIATE_INTTYPE (int8_t);
INSTANTIATE_INTTYPE (int16_t);
INSTANTIATE_INTTYPE (int32_t);
INSTANTIATE_INTTYPE (int64_t);

INSTANTIATE_INTTYPE (uint8_t);
INSTANTIATE_INTTYPE (uint16_t);
INSTANTIATE_INTTYPE (uint32_t);
INSTANTIATE_INTTYPE (uint64_t);


/*

%!assert (intmax ("int64") / intmin ("int64"), int64 (-1))
%!assert (intmin ("int64") / int64 (-1), intmax ("int64"))
%!assert (int64 (2**63), intmax ("int64"))
%!assert (uint64 (2**64), intmax ("uint64"))
%!test
%! a = 1.9*2^61; b = uint64 (a); b++; assert (b > a);
%!test
%! a = -1.9*2^61; b = int64 (a); b++; assert (b > a);
%!test
%! a = int64 (-2**60) + 2; assert (1.25*a == (5*a)/4);
%!test
%! a = uint64 (2**61) + 2; assert (1.25*a == (5*a)/4);
%!assert (int32 (2**31+0.5), intmax ("int32"))
%!assert (int32 (-2**31-0.5), intmin ("int32"))
%!assert ((int64 (2**62)+1)**1, int64 (2**62)+1)
%!assert ((int64 (2**30)+1)**2, int64 (2**60+2**31) + 1)

%!assert (uint8 (char (128)), uint8 (128));
%!assert (uint8 (char (255)), uint8 (255));
%!assert (int8 (char (128)), int8 (128));
%!assert (int8 (char (255)), int8 (255));

%!assert (uint16 (char (128)), uint16 (128));
%!assert (uint16 (char (255)), uint16 (255));
%!assert (int16 (char (128)), int16 (128));
%!assert (int16 (char (255)), int16 (255));

%!assert (uint32 (char (128)), uint32 (128));
%!assert (uint32 (char (255)), uint32 (255));
%!assert (int32 (char (128)), int32 (128));
%!assert (int32 (char (255)), int32 (255));

%!assert (uint64 (char (128)), uint64 (128));
%!assert (uint64 (char (255)), uint64 (255));
%!assert (int64 (char (128)), int64 (128));
%!assert (int64 (char (255)), int64 (255));
*/