view liboctave/util/oct-inttypes.h @ 19895:19755f4fc851

maint: Cleanup C++ code to follow Octave coding conventions. Try to wrap long lines to < 80 characters. Use GNU style and don't indent first brace of function definition. "case" statement is aligned flush left with brace of switch stmt. Remove trailing '\' line continuation from the end of #define macros. Use 2 spaces for indent. * files-dock-widget.cc, history-dock-widget.cc, main-window.cc, octave-cmd.cc, octave-dock-widget.cc, octave-gui.cc, resource-manager.cc, settings-dialog.cc, shortcut-manager.cc, welcome-wizard.cc, workspace-view.cc, cellfun.cc, data.cc, debug.cc, debug.h, dirfns.cc, error.h, file-io.cc, gl-render.cc, gl-render.h, gl2ps-renderer.h, graphics.cc, graphics.in.h, help.cc, input.cc, load-path.cc, load-path.h, lookup.cc, lu.cc, oct-stream.cc, octave-default-image.h, ordschur.cc, pr-output.cc, qz.cc, strfns.cc, symtab.cc, symtab.h, sysdep.cc, variables.cc, zfstream.h, __fltk_uigetfile__.cc, __init_fltk__.cc, __magick_read__.cc, __osmesa_print__.cc, audiodevinfo.cc, ov-classdef.cc, ov-classdef.h, ov-fcn.h, ov-float.cc, ov-flt-complex.cc, ov-java.cc, ov-range.cc, ov-re-mat.cc, ov-usr-fcn.h, ov.cc, op-int.h, options-usage.h, pt-eval.cc, Array-C.cc, Array-fC.cc, Array.cc, Array.h, PermMatrix.cc, Sparse.cc, chMatrix.h, dSparse.cc, dim-vector.h, bsxfun-decl.h, bsxfun-defs.cc, oct-norm.cc, Sparse-op-defs.h, oct-inttypes.cc, oct-inttypes.h, main.in.cc, mkoctfile.in.cc: Cleanup C++ code to follow Octave coding conventions.
author Rik <rik@octave.org>
date Wed, 25 Feb 2015 11:55:49 -0800
parents 3fa35defe495
children
line wrap: on
line source

/*

Copyright (C) 2004-2015 John W. Eaton
Copyright (C) 2008-2009 Jaroslav Hajek

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if !defined (octave_oct_inttypes_h)
#define octave_oct_inttypes_h 1

#include <cstdlib>

#include <limits>
#include <iosfwd>

#include "lo-traits.h"
#include "lo-math.h"
#include "lo-mappers.h"

#ifdef OCTAVE_INT_USE_LONG_DOUBLE
inline long double xround (long double x) { return roundl (x); }
inline long double xisnan (long double x)
{ return xisnan (static_cast<double> (x)); }
#endif

// FIXME: we define this by our own because some compilers, such as
// MSVC, do not provide std::abs (int64_t) and std::abs (uint64_t).  In
// the future, it should go away in favor of std::abs.
template <class T>
inline T octave_int_abs (T x) { return x >= 0 ? x : -x; }

// Query for an integer type of certain sizeof, and signedness.
template<int qsize, bool qsigned>
struct query_integer_type
{
public:
  static const bool registered = false;
  typedef void type; // Void shall result in a compile-time error if we
                     // attempt to use it in computations.
};

#define REGISTER_INT_TYPE(TYPE) \
template <> \
class query_integer_type<sizeof (TYPE), std::numeric_limits<TYPE>::is_signed> \
{ \
public: \
  static const bool registered = true; \
  typedef TYPE type; \
}

// No two registered integers can share sizeof and signedness.
REGISTER_INT_TYPE (int8_t);
REGISTER_INT_TYPE (uint8_t);
REGISTER_INT_TYPE (int16_t);
REGISTER_INT_TYPE (uint16_t);
REGISTER_INT_TYPE (int32_t);
REGISTER_INT_TYPE (uint32_t);
REGISTER_INT_TYPE (int64_t);
REGISTER_INT_TYPE (uint64_t);

// Rationale: Comparators have a single static method, rel(), that returns the
// result of the binary relation. They also have two static boolean fields:
// ltval, gtval determine the value of x OP y if x < y, x > y, respectively.
#define REGISTER_OCTAVE_CMP_OP(NM,OP) \
  class NM \
    { \
    public: \
      static const bool ltval = (0 OP 1); \
      static const bool gtval = (1 OP 0); \
      template <class T> \
      static bool op (T x, T y) { return x OP y; } \
    }

// We also provide two special relations: ct, yielding always true, and cf,
// yielding always false.
#define REGISTER_OCTAVE_CONST_OP(NM,value) \
  class NM \
    { \
    public: \
      static const bool ltval = value; \
      static const bool gtval = value; \
      template <class T> \
      static bool op (T, T) { return value; } \
    }

// Handles non-homogeneous integer comparisons. Avoids doing useless tests.
class octave_int_cmp_op
{
  // This determines a suitable promotion type for T1 when meeting T2 in a
  // binary relation. If promotion to int or T2 is safe, it is used. Otherwise,
  // the signedness of T1 is preserved and it is widened if T2 is wider.
  // Notice that if this is applied to both types, they must end up with equal
  // size.
  template <class T1, class T2>
  class prom
  {
    // Promote to int?
    static const bool pint = (sizeof (T1) < sizeof (int)
                              && sizeof (T2) < sizeof (int));
    static const bool t1sig = std::numeric_limits<T1>::is_signed;
    static const bool t2sig = std::numeric_limits<T2>::is_signed;
    static const bool psig =
      (pint || (sizeof (T2) > sizeof (T1) && t2sig) || t1sig);
    static const int psize =
      (pint ? sizeof (int) : (sizeof (T2) > sizeof (T1)
                              ? sizeof (T2) : sizeof (T1)));
  public:
    typedef typename query_integer_type<psize, psig>::type type;
  };

  // Implements comparisons between two types of equal size but
  // possibly different signedness.
  template<class xop, int size>
  class uiop
  {
    typedef typename query_integer_type<size, false>::type utype;
    typedef typename query_integer_type<size, true>::type stype;
  public:
    static bool op (utype x, utype y)
    { return xop::op (x, y); }
    static bool op (stype x, stype y)
    { return xop::op (x, y); }
    static bool op (stype x, utype y)
    { return (x < 0) ? xop::ltval : xop::op (static_cast<utype> (x), y); }
    static bool op (utype x, stype y)
    { return (y < 0) ? xop::gtval : xop::op (x, static_cast<utype> (y)); }
  };

public:
  REGISTER_OCTAVE_CMP_OP (lt, <);
  REGISTER_OCTAVE_CMP_OP (le, <=);
  REGISTER_OCTAVE_CMP_OP (gt, >);
  REGISTER_OCTAVE_CMP_OP (ge, >=);
  REGISTER_OCTAVE_CMP_OP (eq, ==);
  REGISTER_OCTAVE_CMP_OP (ne, !=);
  REGISTER_OCTAVE_CONST_OP (ct, true);
  REGISTER_OCTAVE_CONST_OP (cf, false);

  // Universal comparison operation.
  template<class xop, class T1, class T2>
  static bool
  op (T1 x, T2 y)
  {
    typedef typename prom<T1, T2>::type PT1;
    typedef typename prom<T2, T1>::type PT2;
    return uiop<xop, sizeof (PT1)>::op (static_cast<PT1> (x),
                                        static_cast<PT2> (y));
  }

public:

  // Mixed comparisons
  template <class xop, class T>
  static bool
  mop (T x, double y)
  { return xop::op (static_cast<double> (x), y); }

  template <class xop, class T>
  static bool
  mop (double x, T y)
  { return xop::op (x, static_cast<double> (y)); }

#ifdef OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED
#define DECLARE_EXTERNAL_LONG_DOUBLE_CMP_OPS(T) \
  template <class xop> static OCTAVE_API bool \
  external_mop (double, T); \
  template <class xop> static OCTAVE_API bool \
  external_mop (T, double)

  DECLARE_EXTERNAL_LONG_DOUBLE_CMP_OPS (int64_t);
  DECLARE_EXTERNAL_LONG_DOUBLE_CMP_OPS (uint64_t);
#endif

  // Typecasting to doubles won't work properly for 64-bit integers --
  // they lose precision.
  // If we have long doubles, use them...
#ifdef OCTAVE_INT_USE_LONG_DOUBLE
#ifdef OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED
#define DEFINE_LONG_DOUBLE_CMP_OP(T) \
  template <class xop> \
  static bool \
  mop (double x, T y) \
  { \
    return external_mop<xop> (x, y); \
  } \
  template <class xop> \
  static bool \
  mop (T x, double y) \
  { \
    return external_mop<xop> (x, y); \
  }
#else
#define DEFINE_LONG_DOUBLE_CMP_OP(T) \
  template <class xop> \
  static bool \
  mop (double x, T y) \
  { \
    return xop::op (static_cast<long double> (x), \
                    static_cast<long double> (y)); \
  } \
  template <class xop> \
  static bool \
  mop (T x, double y) \
  { \
    return xop::op (static_cast<long double> (x), \
                    static_cast<long double> (y)); \
  }
#endif
#else
  // ... otherwise, use external handlers

  // FIXME: We could declare directly the mop methods as external,
  // but we can't do this because bugs in gcc (<= 4.3) prevent
  // explicit instantiations later in that case.
#define DEFINE_LONG_DOUBLE_CMP_OP(T) \
  template <class xop> static OCTAVE_API bool \
  emulate_mop (double, T); \
  template <class xop> \
  static bool \
  mop (double x, T y) \
    { \
      return emulate_mop<xop> (x, y); \
    } \
  template <class xop> static OCTAVE_API bool \
  emulate_mop (T, double); \
  template <class xop> \
  static bool \
  mop (T x, double y) \
    { \
      return emulate_mop<xop> (x, y); \
    }
#endif

  DEFINE_LONG_DOUBLE_CMP_OP(int64_t)
  DEFINE_LONG_DOUBLE_CMP_OP(uint64_t)

#undef DEFINE_LONG_DOUBLE_CMP_OP
};

// Base integer class. No data, just conversion methods and exception flags.
template <class T>
class octave_int_base
{
public:

  static T min_val () { return std::numeric_limits<T>:: min (); }
  static T max_val () { return std::numeric_limits<T>:: max (); }

  // Convert integer value.
  template <class S>
  static T
  truncate_int (const S& value)
  {
    // An exhaustive test whether the max and/or min check can be omitted.
    static const bool t_is_signed = std::numeric_limits<T>::is_signed;
    static const bool s_is_signed = std::numeric_limits<S>::is_signed;
    static const int t_size = sizeof (T);
    static const int s_size = sizeof (S);

    static const bool omit_chk_min =
      (! s_is_signed || (t_is_signed && t_size >= s_size));
    static const bool omit_chk_max =
      (t_size > s_size || (t_size == s_size
                           && (! t_is_signed || s_is_signed)));
    // If the check can be omitted, substitute constant false relation.
    typedef octave_int_cmp_op::cf cf;
    typedef octave_int_cmp_op::lt lt;
    typedef octave_int_cmp_op::gt gt;
    typedef typename if_then_else<omit_chk_min, cf, lt>::result chk_min;
    typedef typename if_then_else<omit_chk_max, cf, gt>::result chk_max;

    // Efficiency of the following depends on inlining and dead code
    // elimination, but that should be a piece of cake for most compilers.
    if (chk_min::op (value, static_cast<S> (min_val ())))
      {
        return min_val ();
      }
    else if (chk_max::op (value, static_cast<S> (max_val ())))
      {
        return max_val ();
      }
    else
      return static_cast<T> (value);
  }

private:

  // Computes a real-valued threshold for a max/min check.
  template <class S>
  static S
  compute_threshold (S val, T orig_val)
  {
    val = xround (val); // Fool optimizations (maybe redundant)
    // If val is even, but orig_val is odd, we're one unit off.
    if (orig_val % 2 && val / 2 == xround (val / 2))
      // FIXME: is this always correct?
      val *= (static_cast<S> (1) - (std::numeric_limits<S>::epsilon () / 2));
    return val;
  }

public:
  // Convert a real number (check NaN and non-int).
  template <class S>
  static T
  convert_real (const S& value)
  {
    // Compute proper thresholds.
    static const S thmin = compute_threshold (static_cast<S> (min_val ()),
                           min_val ());
    static const S thmax = compute_threshold (static_cast<S> (max_val ()),
                           max_val ());
    if (xisnan (value))
      {
        return static_cast<T> (0);
      }
    else if (value < thmin)
      {
        return min_val ();
      }
    else if (value > thmax)
      {
        return max_val ();
      }
    else
      {
        S rvalue = xround (value);
        return static_cast<T> (rvalue);
      }
  }
};

// Saturated (homogeneous) integer arithmetics. The signed and unsigned
// implementations are significantly different, so we implement another layer
// and completely specialize. Arithmetics inherits from octave_int_base so that
// it can use its exceptions and truncation functions.

template <class T, bool is_signed>
class octave_int_arith_base
{ };

// Unsigned arithmetics. C++ standard requires it to be modular, so the
// overflows can be handled efficiently and reliably.
template <class T>
class octave_int_arith_base<T, false> : octave_int_base<T>
{
public:

  static T
  abs (T x) { return x; }

  static T
  signum (T x) { return x ? static_cast<T> (1) : static_cast<T> (0); }

  // Shifts do not overflow.
  static T
  rshift (T x, int n) { return x >> n; }

  static T
  lshift (T x, int n) { return x << n; }

  static T
  minus (T)
  {
    return static_cast<T> (0);
  }

  // the overflow behaviour for unsigned integers is guaranteed by C/C++,
  // so the following should always work.
  static T
  add (T x, T y)
  {
    T u = x + y;
    if (u < x)
      {
        u = octave_int_base<T>::max_val ();
      }
    return u;
  }

  static T
  sub (T x, T y)
  {
    T u = x - y;
    if (u > x)
      {
        u = 0;
      }
    return u;
  }

  // Multiplication is done using promotion to wider integer type. If there is
  // no suitable promotion type, this operation *MUST* be specialized.
  static T mul (T x, T y) { return mul_internal (x, y); }

  static T
  mul_internal (T x, T y)
  {
    // Promotion type for multiplication (if exists).
    typedef typename query_integer_type<2*sizeof (T), false>::type mptype;
    return octave_int_base<T>::truncate_int (static_cast<mptype> (x)
           * static_cast<mptype> (y));
  }

  // Division with rounding to nearest. Note that / and % are probably
  // computed by a single instruction.
  static T
  div (T x, T y)
  {
    if (y != 0)
      {
        T z = x / y;
        T w = x % y;
        if (w >= y-w) z += 1;
        return z;
      }
    else
      {
        return x ? octave_int_base<T>::max_val () : 0;
      }
  }

  // Remainder.
  static T
  rem (T x, T y)
  {
    return y != 0 ? x % y : 0;
  }

  // Modulus. Note the weird y = 0 case for Matlab compatibility.
  static T
  mod (T x, T y)
  {
    return y != 0 ? x % y : x;
  }
};

#ifdef OCTAVE_INT_USE_LONG_DOUBLE

// Handle 64-bit multiply using long double

#ifdef OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED

extern OCTAVE_API uint64_t
octave_external_uint64_uint64_mul (uint64_t, uint64_t);

#endif

template <>
inline uint64_t
octave_int_arith_base<uint64_t, false>::mul_internal (uint64_t x, uint64_t y)
{
  uint64_t retval;

  long double p = static_cast<long double> (x) * static_cast<long double> (y);

  if (p > static_cast<long double> (octave_int_base<uint64_t>::max_val ()))
    retval = octave_int_base<uint64_t>::max_val ();
  else
    retval = static_cast<uint64_t> (p);

  return retval;
}

template <>
inline uint64_t
octave_int_arith_base<uint64_t, false>::mul (uint64_t x, uint64_t y)
{
#ifdef OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED
  return octave_external_uint64_uint64_mul (x, y);
#else
  return mul_internal (x, y);
#endif
}

#else

// Special handler for 64-bit integer multiply.
template <>
OCTAVE_API uint64_t
octave_int_arith_base<uint64_t, false>::mul_internal (uint64_t, uint64_t);

#endif

// Signed integer arithmetics.
// Rationale: If HAVE_FAST_INT_OPS is defined, the following conditions
// should hold:
// 1. Signed numbers are represented by twos complement
//    (see <http://en.wikipedia.org/wiki/Two%27s_complement>)
// 2. static_cast to unsigned int counterpart works like interpreting
//    the signed bit pattern as unsigned (and is thus zero-cost).
// 3. Signed addition and subtraction yield the same bit results as unsigned.
//    (We use casts to prevent optimization interference, so there is no
//     need for things like -ftrapv).
// 4. Bit operations on signed integers work like on unsigned integers,
//    except for the shifts. Shifts are arithmetic.
//
// The above conditions are satisfied by most modern platforms. If
// HAVE_FAST_INT_OPS is defined, bit tricks and wraparound arithmetics are used
// to avoid conditional jumps as much as possible, thus being friendly to
// modern pipeline processor architectures.
// Otherwise, we fall back to a bullet-proof code that only uses assumptions
// guaranteed by the standard.

template <class T>
class octave_int_arith_base<T, true> : octave_int_base<T>
{
  // The corresponding unsigned type.
  typedef typename query_integer_type<sizeof (T), false>::type UT;
public:

  // Returns 1 for negative number, 0 otherwise.
  static T
  __signbit (T x)
  {
#ifdef HAVE_FAST_INT_OPS
    return static_cast<UT> (x) >> std::numeric_limits<T>::digits;
#else
    return (x < 0) ? 1 : 0;
#endif
  }

  static T
  abs (T x)
  {
#ifdef HAVE_FAST_INT_OPS
    // This is close to how GCC does std::abs, but we can't just use std::abs,
    // because its behaviour for INT_MIN is undefined and the compiler could
    // discard the following test.
    T m = x >> std::numeric_limits<T>::digits;
    T y = (x ^ m) - m;
    if (y < 0)
      {
        y = octave_int_base<T>::max_val ();
      }
    return y;
#else
    // -INT_MAX is safe because C++ actually allows only three implementations
    // of integers: sign & magnitude, ones complement and twos complement.
    // The first test will, with modest optimizations, evaluate at compile
    // time, and maybe eliminate the branch completely.
    T y;
    if (octave_int_base<T>::min_val () < -octave_int_base<T>::max_val ()
        && x == octave_int_base<T>::min_val ())
      {
        y = octave_int_base<T>::max_val ();
      }
    else
      y = (x < 0) ? -x : x;
    return y;
#endif
  }

  static T
  signum (T x)
  {
    // With modest optimizations, this will compile without a jump.
    return ((x > 0) ? 1 : 0) - __signbit (x);
  }

  // FIXME: we do not have an authority what signed shifts should
  // exactly do, so we define them the easy way. Note that Matlab does
  // not define signed shifts.

  static T
  rshift (T x, int n) { return x >> n; }

  static T
  lshift (T x, int n) { return x << n; }

  // Minus has problems similar to abs.
  static T
  minus (T x)
  {
#ifdef HAVE_FAST_INT_OPS
    T y = -x;
    if (y == octave_int_base<T>::min_val ())
      {
        --y;
      }
    return y;
#else
    T y;
    if (octave_int_base<T>::min_val () < -octave_int_base<T>::max_val ()
        && x == octave_int_base<T>::min_val ())
      {
        y = octave_int_base<T>::max_val ();
      }
    else
      y = -x;
    return y;
#endif
  }

  static T
  add (T x, T y)
  {
#ifdef HAVE_FAST_INT_OPS
    // The typecasts do nothing, but they are here to prevent an optimizing
    // compiler from interfering. Also, the signed operations on small types
    // actually return int.
    T u = static_cast<UT> (x) + static_cast<UT> (y);
    T ux = u ^ x;
    T uy = u ^ y;
    if ((ux & uy) < 0)
      {
        u = octave_int_base<T>::max_val () + __signbit (~u);
      }
    return u;
#else
    // We shall carefully avoid anything that may overflow.
    T u;
    if (y < 0)
      {
        if (x < octave_int_base<T>::min_val () - y)
          {
            u = octave_int_base<T>::min_val ();
          }
        else
          u = x + y;
      }
    else
      {
        if (x > octave_int_base<T>::max_val () - y)
          {
            u = octave_int_base<T>::max_val ();
          }
        else
          u = x + y;
      }

    return u;
#endif
  }

  // This is very similar to addition.
  static T
  sub (T x, T y)
  {
#ifdef HAVE_FAST_INT_OPS
    // The typecasts do nothing, but they are here to prevent an optimizing
    // compiler from interfering. Also, the signed operations on small types
    // actually return int.
    T u = static_cast<UT> (x) - static_cast<UT> (y);
    T ux = u ^ x;
    T uy = u ^ ~y;
    if ((ux & uy) < 0)
      {
        u = octave_int_base<T>::max_val () + __signbit (~u);
      }
    return u;
#else
    // We shall carefully avoid anything that may overflow.
    T u;
    if (y < 0)
      {
        if (x > octave_int_base<T>::max_val () + y)
          {
            u = octave_int_base<T>::max_val ();
          }
        else
          u = x - y;
      }
    else
      {
        if (x < octave_int_base<T>::min_val () + y)
          {
            u = octave_int_base<T>::min_val ();
          }
        else
          u = x - y;
      }

    return u;
#endif
  }

  // Multiplication is done using promotion to wider integer type. If there is
  // no suitable promotion type, this operation *MUST* be specialized.
  static T mul (T x, T y) { return mul_internal (x, y); }

  static T
  mul_internal (T x, T y)
  {
    // Promotion type for multiplication (if exists).
    typedef typename query_integer_type<2*sizeof (T), true>::type mptype;
    return octave_int_base<T>::truncate_int (static_cast<mptype> (x)
           * static_cast<mptype> (y));
  }

  // Division.
  static T
  div (T x, T y)
  {
    T z;
    if (y == 0)
      {
        if (x < 0)
          z = octave_int_base<T>::min_val ();
        else if (x != 0)
          z = octave_int_base<T>::max_val ();
        else
          z = 0;
      }
    else if (y < 0)
      {
        // This is a special case that overflows as well.
        if (y == -1 && x == octave_int_base<T>::min_val ())
          {
            z = octave_int_base<T>::max_val ();
          }
        else
          {
            z = x / y;
            // Can't overflow, but std::abs (x) can!
            T w = -octave_int_abs (x % y);
            if (w <= y - w)
              z -= 1 - (__signbit (x) << 1);
          }
      }
    else
      {
        z = x / y;
        // FIXME: this is a workaround due to MSVC's absence of
        // std::abs (int64_t).  The call to octave_int_abs can't
        // overflow, but std::abs (x) can!
        T w = octave_int_abs (x % y);

        if (w >= y - w)
          z += 1 - (__signbit (x) << 1);
      }
    return z;
  }

  // Remainder.
  static T
  rem (T x, T y)
  {
    return y != 0 ? x % y : 0;
  }

  // Modulus. Note the weird y = 0 case for Matlab compatibility.
  static T
  mod (T x, T y)
  {
    if (y != 0)
      {
        T r = x % y;
        return ((r < 0) != (y < 0)) ? r + y : r;
      }
    else
      return x;
  }
};

#ifdef OCTAVE_INT_USE_LONG_DOUBLE

// Handle 64-bit multiply using long double

#ifdef OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED

extern OCTAVE_API int64_t
octave_external_int64_int64_mul (int64_t, int64_t);

#endif

template <>
inline int64_t
octave_int_arith_base<int64_t, true>::mul_internal (int64_t x, int64_t y)
{
  int64_t retval;

  long double p = static_cast<long double> (x) * static_cast<long double> (y);

  // NOTE: We could maybe do it with a single branch if HAVE_FAST_INT_OPS,
  // but it would require one more runtime conversion, so the question is
  // whether it would really be faster.
  if (p > static_cast<long double> (octave_int_base<int64_t>::max_val ()))
    retval = octave_int_base<int64_t>::max_val ();
  else if (p < static_cast<long double> (octave_int_base<int64_t>::min_val ()))
    retval = octave_int_base<int64_t>::min_val ();
  else
    retval = static_cast<int64_t> (p);

  return retval;
}

template <>
inline int64_t
octave_int_arith_base<int64_t, true>::mul (int64_t x, int64_t y)
{
#ifdef OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED
  return octave_external_int64_int64_mul (x, y);
#else
  return mul_internal (x, y);
#endif
}

#else

// Special handler for 64-bit integer multiply.
template <>
OCTAVE_API int64_t
octave_int_arith_base<int64_t, true>::mul_internal (int64_t, int64_t);

#endif

// This class simply selects the proper arithmetics.
template<class T>
class octave_int_arith
 : public octave_int_arith_base<T, std::numeric_limits<T>::is_signed>
{ };

template <class T>
class
octave_int : public octave_int_base<T>
{
public:
  typedef T val_type;

  octave_int (void) : ival () { }

  octave_int (T i) : ival (i) { }

  // Always treat characters as unsigned.
  octave_int (char c)
    : ival (octave_int_base<T>::truncate_int (static_cast<unsigned char> (c)))
  { }

  octave_int (double d) : ival (octave_int_base<T>::convert_real (d)) { }

  octave_int (float d) : ival (octave_int_base<T>::convert_real (d)) { }

#ifdef OCTAVE_INT_USE_LONG_DOUBLE
  octave_int (long double d) : ival (octave_int_base<T>::convert_real (d)) { }
#endif

  octave_int (bool b) : ival (b) { }

  template <class U>
  octave_int (const U& i) : ival(octave_int_base<T>::truncate_int (i)) { }

  template <class U>
  octave_int (const octave_int<U>& i)
    : ival (octave_int_base<T>::truncate_int (i.value ())) { }

  octave_int (const octave_int<T>& i) : ival (i.ival) { }

  octave_int& operator = (const octave_int<T>& i)
  {
    ival = i.ival;
    return *this;
  }

  T value (void) const { return ival; }

  const unsigned char * iptr (void) const
  { return reinterpret_cast<const unsigned char *> (& ival); }

  bool operator ! (void) const { return ! ival; }

  bool bool_value (void) const { return static_cast<bool> (value ()); }

  char char_value (void) const { return static_cast<char> (value ()); }

  double double_value (void) const { return static_cast<double> (value ()); }

  float float_value (void) const { return static_cast<float> (value ()); }

  operator T (void) const { return value (); }

  // char and bool operators intentionally omitted.

  operator double (void) const { return double_value (); }

  operator float (void) const { return float_value (); }

  octave_int<T>
  operator + () const
  { return *this; }

  // unary operators & mappers
#define OCTAVE_INT_UN_OP(OPNAME,NAME) \
  inline octave_int<T> \
  OPNAME () const \
  { return octave_int_arith<T>::NAME (ival); }

  OCTAVE_INT_UN_OP(operator -, minus)
  OCTAVE_INT_UN_OP(abs, abs)
  OCTAVE_INT_UN_OP(signum, signum)

#undef OCTAVE_INT_UN_OP

// Homogeneous binary integer operations.
#define OCTAVE_INT_BIN_OP(OP, NAME, ARGT) \
  inline octave_int<T> \
  operator OP (const ARGT& y) const \
  { return octave_int_arith<T>::NAME (ival, y); } \
  inline octave_int<T>& \
  operator OP##= (const ARGT& y) \
  { \
    ival = octave_int_arith<T>::NAME (ival, y); \
    return *this; \
  }

  OCTAVE_INT_BIN_OP(+, add, octave_int<T>)
  OCTAVE_INT_BIN_OP(-, sub, octave_int<T>)
  OCTAVE_INT_BIN_OP(*, mul, octave_int<T>)
  OCTAVE_INT_BIN_OP(/, div, octave_int<T>)
  OCTAVE_INT_BIN_OP(%, rem, octave_int<T>)
  OCTAVE_INT_BIN_OP(<<, lshift, int)
  OCTAVE_INT_BIN_OP(>>, rshift, int)

#undef OCTAVE_INT_BIN_OP

  static octave_int<T> min (void) { return std::numeric_limits<T>::min (); }
  static octave_int<T> max (void) { return std::numeric_limits<T>::max (); }

  static int nbits (void) { return std::numeric_limits<T>::digits; }

  static int byte_size (void) { return sizeof (T); }

  static const char *type_name ();

  // The following are provided for convenience.
  static const octave_int zero, one;

  // Unsafe.  This function exists to support the MEX interface.
  // You should not use it anywhere else.
  void *mex_get_data (void) const { return const_cast<T *> (&ival); }

private:

  T ival;
};

template <class T>
inline octave_int<T>
rem (const octave_int<T>& x, const octave_int<T>& y)
{ return octave_int_arith<T>::rem (x.value (), y.value ()); }

template <class T>
inline octave_int<T>
mod (const octave_int<T>& x, const octave_int<T>& y)
{ return octave_int_arith<T>::mod (x.value (), y.value ()); }

// No mixed integer binary operations!

template <class T>
inline bool
xisnan (const octave_int<T>&)
{ return false; }

// FIXME: can/should any of these be inline?

template <class T>
extern OCTAVE_API octave_int<T>
pow (const octave_int<T>&, const octave_int<T>&);

template <class T>
extern OCTAVE_API octave_int<T>
pow (const double& a, const octave_int<T>& b);

template <class T>
extern OCTAVE_API octave_int<T>
pow (const octave_int<T>& a, const double& b);

template <class T>
extern OCTAVE_API octave_int<T>
pow (const float& a, const octave_int<T>& b);

template <class T>
extern OCTAVE_API octave_int<T>
pow (const octave_int<T>& a, const float& b);

// FIXME: Do we really need a differently named single-precision
//        function integer power function here instead of an overloaded
//        one?
template <class T>
extern OCTAVE_API octave_int<T>
powf (const float& a, const octave_int<T>& b);

template <class T>
extern OCTAVE_API octave_int<T>
powf (const octave_int<T>& a, const float& b);

// Binary relations

#define OCTAVE_INT_CMP_OP(OP, NAME) \
  template<class T1, class T2> \
  inline bool \
  operator OP (const octave_int<T1>& x, const octave_int<T2>& y) \
  { return octave_int_cmp_op::op<octave_int_cmp_op::NAME, T1, T2> \
    (x.value (), y.value ()); }

OCTAVE_INT_CMP_OP (<, lt)
OCTAVE_INT_CMP_OP (<=, le)
OCTAVE_INT_CMP_OP (>, gt)
OCTAVE_INT_CMP_OP (>=, ge)
OCTAVE_INT_CMP_OP (==, eq)
OCTAVE_INT_CMP_OP (!=, ne)

#undef OCTAVE_INT_CMP_OP

template <class T>
inline std::ostream&
operator << (std::ostream& os, const octave_int<T>& ival)
{
  os << ival.value ();
  return os;
}

template <class T>
inline std::istream&
operator >> (std::istream& is, octave_int<T>& ival)
{
  T tmp = 0;
  is >> tmp;
  ival = tmp;
  return is;
}

// We need to specialise for char and unsigned char because
// std::operator<< and std::operator>> are overloaded to input and
// output the ASCII character values instead of a representation of
// their numerical value (e.g. os << char(10) outputs a space instead
// of outputting the characters '1' and '0')

template <>
inline std::ostream&
operator << (std::ostream& os, const octave_int<int8_t>& ival)
{
  os << static_cast<int> (ival.value ());
  return os;
}

template <>
inline std::ostream&
operator << (std::ostream& os, const octave_int<uint8_t>& ival)
{
  os << static_cast<unsigned int> (ival.value ());
  return os;
}


template <>
inline std::istream&
operator >> (std::istream& is, octave_int<int8_t>& ival)
{
  int tmp = 0;
  is >> tmp;
  ival = static_cast<int8_t> (tmp);
  return is;
}

template <>
inline std::istream&
operator >> (std::istream& is, octave_int<uint8_t>& ival)
{
  unsigned int tmp = 0;
  is >> tmp;
  ival = static_cast<uint8_t> (tmp);
  return is;
}


// Bitwise operations

#define OCTAVE_INT_BITCMP_OP(OP) \
  template <class T> \
  octave_int<T> \
  operator OP (const octave_int<T>& x, const octave_int<T>& y) \
  { return x.value () OP y.value (); }

OCTAVE_INT_BITCMP_OP (&)
OCTAVE_INT_BITCMP_OP (|)
OCTAVE_INT_BITCMP_OP (^)

#undef OCTAVE_INT_BITCMP_OP

// General bit shift.
template <class T>
octave_int<T>
bitshift (const octave_int<T>& a, int n,
          const octave_int<T>& mask = std::numeric_limits<T>::max ())
{
  if (n > 0)
    return (a << n) & mask;
  else if (n < 0)
    return (a >> -n) & mask;
  else
    return a & mask;
}

typedef octave_int<int8_t> octave_int8;
typedef octave_int<int16_t> octave_int16;
typedef octave_int<int32_t> octave_int32;
typedef octave_int<int64_t> octave_int64;

typedef octave_int<uint8_t> octave_uint8;
typedef octave_int<uint16_t> octave_uint16;
typedef octave_int<uint32_t> octave_uint32;
typedef octave_int<uint64_t> octave_uint64;

#ifdef OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED

#define DECLARE_EXTERNAL_LONG_DOUBLE_OP(T, OP) \
  extern OCTAVE_API T \
  external_double_ ## T ## _ ## OP (double x, T y); \
  extern OCTAVE_API T \
  external_ ## T ## _double_ ## OP (T x, double y)

#define DECLARE_EXTERNAL_LONG_DOUBLE_OPS(T) \
  DECLARE_EXTERNAL_LONG_DOUBLE_OP (T, add); \
  DECLARE_EXTERNAL_LONG_DOUBLE_OP (T, sub); \
  DECLARE_EXTERNAL_LONG_DOUBLE_OP (T, mul); \
  DECLARE_EXTERNAL_LONG_DOUBLE_OP (T, div)

DECLARE_EXTERNAL_LONG_DOUBLE_OPS (octave_int64);
DECLARE_EXTERNAL_LONG_DOUBLE_OPS (octave_uint64);

#endif

#define OCTAVE_INT_DOUBLE_BIN_OP0(OP) \
  template <class T> \
  inline octave_int<T> \
  operator OP (const octave_int<T>& x, const double& y) \
  { return octave_int<T> (static_cast<double> (x) OP y); } \
  template <class T> \
  inline octave_int<T> \
  operator OP (const double& x, const octave_int<T>& y) \
  { return octave_int<T> (x OP static_cast<double> (y)); }

#ifdef OCTAVE_INT_USE_LONG_DOUBLE
// Handle mixed op using long double
#ifdef OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED
#define OCTAVE_INT_DOUBLE_BIN_OP(OP, NAME) \
  OCTAVE_INT_DOUBLE_BIN_OP0(OP) \
  template <> \
  inline octave_int64 \
  operator OP (const double& x, const octave_int64& y) \
  { \
    return external_double_octave_int64_ ## NAME (x, y); \
  } \
  template <> \
  inline octave_uint64 \
  operator OP (const double& x, const octave_uint64& y) \
  { \
    return external_double_octave_uint64_ ## NAME (x, y); \
  } \
  template <> \
  inline octave_int64 \
  operator OP (const octave_int64& x, const double& y) \
  { \
    return external_octave_int64_double_ ## NAME (x, y); \
  } \
  template <> \
  inline octave_uint64 \
  operator OP (const octave_uint64& x, const double& y) \
  { \
    return external_octave_uint64_double_ ## NAME (x, y); \
  }
#else
#define OCTAVE_INT_DOUBLE_BIN_OP(OP, NAME) \
  OCTAVE_INT_DOUBLE_BIN_OP0(OP) \
  template <> \
  inline octave_int64 \
  operator OP (const double& x, const octave_int64& y) \
  { \
    return octave_int64 (x OP static_cast<long double> (y.value ())); \
  } \
  template <> \
  inline octave_uint64 \
  operator OP (const double& x, const octave_uint64& y) \
  { \
    return octave_uint64 (x OP static_cast<long double> (y.value ())); \
  } \
  template <> \
  inline octave_int64 \
  operator OP (const octave_int64& x, const double& y) \
  { \
    return octave_int64 (static_cast<long double> (x.value ()) OP y);   \
  } \
  template <> \
  inline octave_uint64 \
  operator OP (const octave_uint64& x, const double& y) \
  { \
    return octave_uint64 (static_cast<long double> (x.value ()) OP y); \
  }
#endif
#else
// external handlers
#define OCTAVE_INT_DOUBLE_BIN_OP(OP, NAME) \
  OCTAVE_INT_DOUBLE_BIN_OP0(OP) \
  template <> \
  OCTAVE_API octave_int64 \
  operator OP (const double&, const octave_int64&); \
  template <> \
  OCTAVE_API octave_uint64 \
  operator OP (const double&, const octave_uint64&); \
  template <> \
  OCTAVE_API octave_int64 \
  operator OP (const octave_int64&, const double&); \
  template <> \
  OCTAVE_API octave_uint64 \
  operator OP (const octave_uint64&, const double&);

#endif

OCTAVE_INT_DOUBLE_BIN_OP (+, add)
OCTAVE_INT_DOUBLE_BIN_OP (-, sub)
OCTAVE_INT_DOUBLE_BIN_OP (*, mul)
OCTAVE_INT_DOUBLE_BIN_OP (/, div)

#undef OCTAVE_INT_DOUBLE_BIN_OP0
#undef OCTAVE_INT_DOUBLE_BIN_OP
#undef DECLARE_EXTERNAL_LONG_DOUBLE_OP
#undef DECLARE_EXTERNAL_LONG_DOUBLE_OPS

#define OCTAVE_INT_DOUBLE_CMP_OP(OP,NAME) \
  template <class T> \
  inline bool \
  operator OP (const octave_int<T>& x, const double& y) \
  { return octave_int_cmp_op::mop<octave_int_cmp_op::NAME> (x.value (), y); } \
  template <class T> \
  inline bool \
  operator OP (const double& x, const octave_int<T>& y) \
  { return octave_int_cmp_op::mop<octave_int_cmp_op::NAME> (x, y.value ()); }

OCTAVE_INT_DOUBLE_CMP_OP (<, lt)
OCTAVE_INT_DOUBLE_CMP_OP (<=, le)
OCTAVE_INT_DOUBLE_CMP_OP (>=, ge)
OCTAVE_INT_DOUBLE_CMP_OP (>, gt)
OCTAVE_INT_DOUBLE_CMP_OP (==, eq)
OCTAVE_INT_DOUBLE_CMP_OP (!=, ne)

#undef OCTAVE_INT_DOUBLE_CMP_OP

// Floats are handled by simply converting to doubles.

#define OCTAVE_INT_FLOAT_BIN_OP(OP) \
  template <class T> \
  inline octave_int<T> \
  operator OP (const octave_int<T>& x, float y) \
  { return x OP static_cast<double> (y); } \
  template <class T> \
  inline octave_int<T> \
  operator OP (float x, const octave_int<T>& y) \
  { return static_cast<double> (x) OP y; }

OCTAVE_INT_FLOAT_BIN_OP (+)
OCTAVE_INT_FLOAT_BIN_OP (-)
OCTAVE_INT_FLOAT_BIN_OP (*)
OCTAVE_INT_FLOAT_BIN_OP (/)

#undef OCTAVE_INT_FLOAT_BIN_OP

#define OCTAVE_INT_FLOAT_CMP_OP(OP) \
  template <class T> \
  inline bool \
  operator OP (const octave_int<T>& x, const float& y) \
  { return x OP static_cast<double> (y); } \
  template <class T> \
  bool \
  operator OP (const float& x, const octave_int<T>& y) \
  { return static_cast<double> (x) OP y; }

OCTAVE_INT_FLOAT_CMP_OP (<)
OCTAVE_INT_FLOAT_CMP_OP (<=)
OCTAVE_INT_FLOAT_CMP_OP (>=)
OCTAVE_INT_FLOAT_CMP_OP (>)
OCTAVE_INT_FLOAT_CMP_OP (==)
OCTAVE_INT_FLOAT_CMP_OP (!=)

#undef OCTAVE_INT_FLOAT_CMP_OP

template <class T>
octave_int<T>
xmax (const octave_int<T>& x, const octave_int<T>& y)
{
  const T xv = x.value ();
  const T yv = y.value ();
  return octave_int<T> (xv >= yv ? xv : yv);
}

template <class T>
octave_int<T>
xmin (const octave_int<T>& x, const octave_int<T>& y)
{
  const T xv = x.value ();
  const T yv = y.value ();
  return octave_int<T> (xv <= yv ? xv : yv);
}

#endif