view src/OPERATORS/op-dm-scm.cc @ 8966:1bba53c0a38d

Implement diag + sparse, diag - sparse, sparse + diag, sparse - diag. Date: Mon, 9 Mar 2009 17:45:22 -0400 This does not use the typical sparse-mx-ops generator. I suspect the sematics of elementwise multiplication and division to be rather controversial, so they are not included. If comparison operations are added, the implementation should be shifted over to use the typical generator. The template in Sparse-diag-op-defs.h likely could use const bools rather than functional argument operations. I haven't measured which is optimized more effectively. Also, the Octave binding layer in op-dm-scm.cc likely could use all sorts of macro or template trickery, but it's far easier to let Emacs handle it for now. That would be worth revisiting if further elementwise sparse and diagonal operations are added.
author Jason Riedy <jason@acm.org>
date Mon, 09 Mar 2009 17:49:14 -0400
parents 42aff15e059b
children b4fdfee405b5
line wrap: on
line source

/*

Copyright (C) 2009 Jason Riedy, Jaroslav Hajek

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "gripes.h"
#include "oct-obj.h"
#include "ov.h"
#include "ov-typeinfo.h"
#include "ops.h"

#include "ov-re-diag.h"
#include "ov-cx-diag.h"
#include "ov-re-sparse.h"
#include "ov-cx-sparse.h"

#include "sparse-xdiv.h"

// diagonal matrix by sparse matrix ops

DEFBINOP (mul_dm_scm, diag_matrix, sparse_complex_matrix)
{
  CAST_BINOP_ARGS (const octave_diag_matrix&, const octave_sparse_complex_matrix&);

  if (v2.rows() == 1 && v2.columns() == 1)
    // If v2 is a scalar in disguise, return a diagonal matrix rather than
    // a sparse matrix.
    {
      std::complex<double> d = v2.complex_value ();

      return octave_value (v1.diag_matrix_value () * d);
    }
  else
    {
      MatrixType typ = v2.matrix_type ();
      SparseComplexMatrix ret = v1.diag_matrix_value () * v2.sparse_complex_matrix_value ();
      octave_value out = octave_value (ret);
      typ.mark_as_unsymmetric ();
      out.matrix_type (typ);
      return out;
    }
}

DEFBINOP (mul_cdm_sm, complex_diag_matrix, sparse_matrix)
{
  CAST_BINOP_ARGS (const octave_complex_diag_matrix&, const octave_sparse_matrix&);

  if (v2.rows() == 1 && v2.columns() == 1)
    // If v2 is a scalar in disguise, return a diagonal matrix rather than
    // a sparse matrix.
    {
      std::complex<double> d = v2.scalar_value ();

      return octave_value (v1.complex_diag_matrix_value () * d);
    }
  else
    {
      MatrixType typ = v2.matrix_type ();
      SparseComplexMatrix ret = v1.complex_diag_matrix_value () * v2.sparse_matrix_value ();
      octave_value out = octave_value (ret);
      typ.mark_as_unsymmetric ();
      out.matrix_type (typ);
      return out;
    }
}

DEFBINOP (mul_cdm_scm, complex_diag_matrix, sparse_complex_matrix)
{
  CAST_BINOP_ARGS (const octave_complex_diag_matrix&, const octave_sparse_complex_matrix&);

  if (v2.rows() == 1 && v2.columns() == 1)
    // If v2 is a scalar in disguise, return a diagonal matrix rather than
    // a sparse matrix.
    {
      std::complex<double> d = v2.complex_value ();

      return octave_value (v1.complex_diag_matrix_value () * d);
    }
  else
    {
      MatrixType typ = v2.matrix_type ();
      SparseComplexMatrix ret = v1.complex_diag_matrix_value () * v2.sparse_complex_matrix_value ();
      octave_value out = octave_value (ret);
      typ.mark_as_unsymmetric ();
      out.matrix_type (typ);
      return out;
    }
}

DEFBINOP (ldiv_dm_scm, diag_matrix, sparse_complex_matrix)
{
  CAST_BINOP_ARGS (const octave_diag_matrix&,
		   const octave_sparse_complex_matrix&);

  MatrixType typ = v2.matrix_type ();
  return xleftdiv (v1.diag_matrix_value (), v2.sparse_complex_matrix_value (),
		   typ);
}

DEFBINOP (ldiv_cdm_sm, complex_diag_matrix, sparse_matrix)
{
  CAST_BINOP_ARGS (const octave_complex_diag_matrix&,
		   const octave_sparse_matrix&);

  MatrixType typ = v2.matrix_type ();
  return xleftdiv (v1.complex_diag_matrix_value (), v2.sparse_matrix_value (),
		   typ);
}

DEFBINOP (ldiv_cdm_scm, complex_diag_matrix, sparse_complex_matrix)
{
  CAST_BINOP_ARGS (const octave_complex_diag_matrix&,
		   const octave_sparse_complex_matrix&);

  MatrixType typ = v2.matrix_type ();
  return xleftdiv (v1.complex_diag_matrix_value (), v2.sparse_complex_matrix_value (),
		   typ);
}

DEFBINOP (add_dm_scm, diag_matrix, sparse_complex_matrix)
{
  CAST_BINOP_ARGS (const octave_diag_matrix&, const octave_sparse_complex_matrix&);

  if (v2.rows() == 1 && v2.columns() == 1)
    // If v2 is a scalar in disguise, return a diagonal matrix rather than
    // a sparse matrix.
    {
      std::complex<double> d = v2.complex_value ();

      return octave_value (v1.diag_matrix_value () + d);
    }
  else
    return v1.diag_matrix_value () + v2.sparse_complex_matrix_value ();
}

DEFBINOP (add_cdm_sm, complex_diag_matrix, sparse_matrix)
{
  CAST_BINOP_ARGS (const octave_complex_diag_matrix&, const octave_sparse_matrix&);

  if (v2.rows() == 1 && v2.columns() == 1)
    // If v2 is a scalar in disguise, return a diagonal matrix rather than
    // a sparse matrix.
    {
      double d = v2.scalar_value ();

      return octave_value (v1.complex_diag_matrix_value () + d);
    }
  else
    return v1.complex_diag_matrix_value () + v2.sparse_matrix_value ();
}

DEFBINOP (add_cdm_scm, complex_diag_matrix, sparse_complex_matrix)
{
  CAST_BINOP_ARGS (const octave_complex_diag_matrix&, const octave_sparse_complex_matrix&);

  if (v2.rows() == 1 && v2.columns() == 1)
    // If v2 is a scalar in disguise, return a diagonal matrix rather than
    // a sparse matrix.
    {
      std::complex<double> d = v2.complex_value ();

      return octave_value (v1.complex_diag_matrix_value () + d);
    }
  else
    return v1.complex_diag_matrix_value () + v2.sparse_complex_matrix_value ();
}

DEFBINOP (sub_dm_scm, diag_matrix, sparse_complex_matrix)
{
  CAST_BINOP_ARGS (const octave_diag_matrix&, const octave_sparse_complex_matrix&);

  if (v2.rows() == 1 && v2.columns() == 1)
    // If v2 is a scalar in disguise, return a diagonal matrix rather than
    // a sparse matrix.
    {
      std::complex<double> d = v2.complex_value ();

      return octave_value (v1.diag_matrix_value () + (-d));
    }
  else
    return v1.diag_matrix_value () - v2.sparse_complex_matrix_value ();
}

DEFBINOP (sub_cdm_sm, complex_diag_matrix, sparse_matrix)
{
  CAST_BINOP_ARGS (const octave_complex_diag_matrix&, const octave_sparse_matrix&);

  if (v2.rows() == 1 && v2.columns() == 1)
    // If v2 is a scalar in disguise, return a diagonal matrix rather than
    // a sparse matrix.
    {
      double d = v2.scalar_value ();

      return octave_value (v1.complex_diag_matrix_value () + (-d));
    }
  else
    return v1.complex_diag_matrix_value () - v2.sparse_matrix_value ();
}

DEFBINOP (sub_cdm_scm, complex_diag_matrix, sparse_complex_matrix)
{
  CAST_BINOP_ARGS (const octave_complex_diag_matrix&, const octave_sparse_complex_matrix&);

  if (v2.rows() == 1 && v2.columns() == 1)
    // If v2 is a scalar in disguise, return a diagonal matrix rather than
    // a sparse matrix.
    {
      std::complex<double> d = v2.complex_value ();

      return octave_value (v1.complex_diag_matrix_value () + (-d));
    }
  else
    return v1.complex_diag_matrix_value () - v2.sparse_complex_matrix_value ();
}

// sparse matrix by diagonal matrix ops

DEFBINOP (mul_scm_dm, sparse_complex_matrix, diag_matrix)
{
  CAST_BINOP_ARGS (const octave_sparse_complex_matrix&, const octave_diag_matrix&);

  if (v1.rows() == 1 && v1.columns() == 1)
    // If v1 is a scalar in disguise, return a diagonal matrix rather than
    // a sparse matrix.
    {
      std::complex<double> d = v1.complex_value ();

      return octave_value (d * v2.diag_matrix_value ());
    }
  else
    {
      MatrixType typ = v1.matrix_type ();
      SparseComplexMatrix ret = v1.sparse_complex_matrix_value () * v2.diag_matrix_value ();
      octave_value out = octave_value (ret);
      typ.mark_as_unsymmetric ();
      out.matrix_type (typ);
      return out;
    }
}

DEFBINOP (mul_sm_cdm, sparse_matrix, complex_diag_matrix)
{
  CAST_BINOP_ARGS (const octave_sparse_matrix&, const octave_complex_diag_matrix&);

  if (v1.rows() == 1 && v1.columns() == 1)
    // If v1 is a scalar in disguise, return a diagonal matrix rather than
    // a sparse matrix.
    {
      std::complex<double> d = v1.complex_value ();

      return octave_value (d * v2.complex_diag_matrix_value ());
    }
  else
    {
      MatrixType typ = v1.matrix_type ();
      SparseComplexMatrix ret = v1.sparse_matrix_value () * v2.complex_diag_matrix_value ();
      octave_value out = octave_value (ret);
      typ.mark_as_unsymmetric ();
      out.matrix_type (typ);
      return out;
    }
}

DEFBINOP (mul_scm_cdm, sparse_complex_matrix, complex_diag_matrix)
{
  CAST_BINOP_ARGS (const octave_sparse_complex_matrix&, const octave_complex_diag_matrix&);

  if (v1.rows() == 1 && v1.columns() == 1)
    // If v1 is a scalar in disguise, return a diagonal matrix rather than
    // a sparse matrix.
    {
      std::complex<double> d = v1.complex_value ();

      return octave_value (d * v2.complex_diag_matrix_value ());
    }
  else if (v2.rows() == 1 && v2.columns() == 1)
    // If v2 is a scalar in disguise, don't bother with further dispatching.
    {
      std::complex<double> d = v2.complex_value ();

      return octave_value (v1.sparse_complex_matrix_value () * d);
    }
  else
    {
      MatrixType typ = v1.matrix_type ();
      SparseComplexMatrix ret = v1.sparse_complex_matrix_value () * v2.complex_diag_matrix_value ();
      octave_value out = octave_value (ret);
      typ.mark_as_unsymmetric ();
      out.matrix_type (typ);
      return out;
    }
}

DEFBINOP (div_scm_dm, sparse_complex_matrix, diag_matrix)
{
  CAST_BINOP_ARGS (const octave_sparse_complex_matrix&, const octave_diag_matrix&);

  if (v2.rows() == 1 && v2.columns() == 1)
    {
      double d = v2.scalar_value ();

      if (d == 0.0)
	gripe_divide_by_zero ();

      return octave_value (v1.sparse_complex_matrix_value () / d);
    }
  else
    {
      MatrixType typ = v2.matrix_type ();
      return xdiv (v1.sparse_complex_matrix_value (), v2.diag_matrix_value (), typ);
    }
}

DEFBINOP (div_sm_cdm, sparse_matrix, complex_diag_matrix)
{
  CAST_BINOP_ARGS (const octave_sparse_matrix&, const octave_complex_diag_matrix&);

  if (v2.rows() == 1 && v2.columns() == 1)
    {
      std::complex<double> d = v2.complex_value ();

      if (d == 0.0)
	gripe_divide_by_zero ();

      return octave_value (v1.sparse_matrix_value () / d);
    }
  else
    {
      MatrixType typ = v2.matrix_type ();
      return xdiv (v1.sparse_matrix_value (), v2.complex_diag_matrix_value (), typ);
    }
}

DEFBINOP (div_scm_cdm, sparse_complex_matrix, complex_diag_matrix)
{
  CAST_BINOP_ARGS (const octave_sparse_complex_matrix&, const octave_complex_diag_matrix&);

  if (v2.rows() == 1 && v2.columns() == 1)
    {
      std::complex<double> d = v2.complex_value ();

      if (d == 0.0)
	gripe_divide_by_zero ();

      return octave_value (v1.sparse_complex_matrix_value () / d);
    }
  else
    {
      MatrixType typ = v2.matrix_type ();
      return xdiv (v1.sparse_complex_matrix_value (), v2.complex_diag_matrix_value (), typ);
    }
}

DEFBINOP (add_sm_cdm, sparse_matrix, complex_diag_matrix)
{
  CAST_BINOP_ARGS (const octave_sparse_matrix&, const octave_complex_diag_matrix&);

  if (v2.rows() == 1 && v2.columns() == 1)
    // If v2 is a scalar in disguise, return a diagonal matrix rather than
    // a sparse matrix.
    {
      std::complex<double> d = v2.complex_value ();

      return octave_value (v1.sparse_matrix_value () + d);
    }
  else
    return v1.sparse_matrix_value () + v2.complex_diag_matrix_value ();
}

DEFBINOP (add_scm_dm, sparse_complex_matrix, diag_matrix)
{
  CAST_BINOP_ARGS (const octave_sparse_complex_matrix&, const octave_diag_matrix&);

  if (v2.rows() == 1 && v2.columns() == 1)
    // If v2 is a scalar in disguise, return a diagonal matrix rather than
    // a sparse matrix.
    {
      double d = v2.scalar_value ();

      return octave_value (v1.sparse_complex_matrix_value () + d);
    }
  else
    return v1.sparse_complex_matrix_value () + v2.diag_matrix_value ();
}

DEFBINOP (add_scm_cdm, sparse_complex_matrix, complex_diag_matrix)
{
  CAST_BINOP_ARGS (const octave_sparse_complex_matrix&, const octave_complex_diag_matrix&);

  if (v2.rows() == 1 && v2.columns() == 1)
    // If v2 is a scalar in disguise, return a diagonal matrix rather than
    // a sparse matrix.
    {
      std::complex<double> d = v2.complex_value ();

      return octave_value (v1.sparse_complex_matrix_value () + d);
    }
  else
    return v1.sparse_complex_matrix_value () + v2.complex_diag_matrix_value ();
}

DEFBINOP (sub_sm_cdm, sparse_matrix, complex_diag_matrix)
{
  CAST_BINOP_ARGS (const octave_sparse_matrix&, const octave_complex_diag_matrix&);

  if (v2.rows() == 1 && v2.columns() == 1)
    // If v2 is a scalar in disguise, return a diagonal matrix rather than
    // a sparse matrix.
    {
      std::complex<double> d = v2.complex_value ();

      return octave_value (v1.sparse_matrix_value () + (-d));
    }
  else
    return v1.sparse_matrix_value () - v2.complex_diag_matrix_value ();
}

DEFBINOP (sub_scm_dm, sparse_complex_matrix, diag_matrix)
{
  CAST_BINOP_ARGS (const octave_sparse_complex_matrix&, const octave_diag_matrix&);

  if (v2.rows() == 1 && v2.columns() == 1)
    // If v2 is a scalar in disguise, return a diagonal matrix rather than
    // a sparse matrix.
    {
      double d = v2.scalar_value ();

      return octave_value (v1.sparse_complex_matrix_value () + (-d));
    }
  else
    return v1.sparse_complex_matrix_value () - v2.diag_matrix_value ();
}

DEFBINOP (sub_scm_cdm, sparse_complex_matrix, complex_diag_matrix)
{
  CAST_BINOP_ARGS (const octave_sparse_complex_matrix&, const octave_complex_diag_matrix&);

  if (v2.rows() == 1 && v2.columns() == 1)
    // If v2 is a scalar in disguise, return a diagonal matrix rather than
    // a sparse matrix.
    {
      std::complex<double> d = v2.complex_value ();

      return octave_value (v1.sparse_complex_matrix_value () + (-d));
    }
  else
    return v1.sparse_complex_matrix_value () - v2.complex_diag_matrix_value ();
}

void
install_dm_scm_ops (void)
{
  INSTALL_BINOP (op_mul, octave_diag_matrix, octave_sparse_complex_matrix,
		 mul_dm_scm);
  INSTALL_BINOP (op_mul, octave_complex_diag_matrix, octave_sparse_matrix,
		 mul_cdm_sm);
  INSTALL_BINOP (op_mul, octave_complex_diag_matrix, octave_sparse_complex_matrix,
		 mul_cdm_scm);
  INSTALL_BINOP (op_ldiv, octave_diag_matrix, octave_sparse_complex_matrix, ldiv_dm_scm);
  INSTALL_BINOP (op_ldiv, octave_complex_diag_matrix, octave_sparse_matrix, ldiv_cdm_sm);
  INSTALL_BINOP (op_ldiv, octave_complex_diag_matrix, octave_sparse_complex_matrix,
		 ldiv_cdm_scm);

  INSTALL_BINOP (op_add, octave_diag_matrix, octave_sparse_complex_matrix, add_dm_scm);
  INSTALL_BINOP (op_add, octave_complex_diag_matrix, octave_sparse_matrix, add_cdm_sm);
  INSTALL_BINOP (op_add, octave_complex_diag_matrix, octave_sparse_complex_matrix,
		 add_cdm_scm);
  INSTALL_BINOP (op_sub, octave_diag_matrix, octave_sparse_complex_matrix, sub_dm_scm);
  INSTALL_BINOP (op_sub, octave_complex_diag_matrix, octave_sparse_matrix, sub_cdm_sm);
  INSTALL_BINOP (op_sub, octave_complex_diag_matrix, octave_sparse_complex_matrix,
		 sub_cdm_scm);

  INSTALL_BINOP (op_mul, octave_sparse_complex_matrix, octave_diag_matrix,
		 mul_scm_dm);
  INSTALL_BINOP (op_mul, octave_sparse_matrix, octave_complex_diag_matrix,
		 mul_sm_cdm);
  INSTALL_BINOP (op_mul, octave_sparse_complex_matrix, octave_complex_diag_matrix,
		 mul_scm_cdm);

  INSTALL_BINOP (op_div, octave_sparse_complex_matrix, octave_diag_matrix, div_scm_dm);
  INSTALL_BINOP (op_div, octave_sparse_matrix, octave_complex_diag_matrix, div_sm_cdm);
  INSTALL_BINOP (op_div, octave_sparse_complex_matrix, octave_complex_diag_matrix, div_scm_cdm);

  INSTALL_BINOP (op_add, octave_sparse_complex_matrix, octave_diag_matrix, add_scm_dm);
  INSTALL_BINOP (op_add, octave_sparse_matrix, octave_complex_diag_matrix, add_sm_cdm);
  INSTALL_BINOP (op_add, octave_sparse_complex_matrix, octave_complex_diag_matrix, add_scm_cdm);
  INSTALL_BINOP (op_sub, octave_sparse_complex_matrix, octave_diag_matrix, sub_scm_dm);
  INSTALL_BINOP (op_sub, octave_sparse_matrix, octave_complex_diag_matrix, sub_sm_cdm);
  INSTALL_BINOP (op_sub, octave_sparse_complex_matrix, octave_complex_diag_matrix, sub_scm_cdm);
}